LP6 - J35A UBC Library

$$
\begin{array}{rr}
\text { Crewood. } & \text { HIST } \\
\text { WHOR } 17.1919 . & \text { SA } 44 \\
& M 32 \\
& 1900 \\
& C .2 \\
& \text { elln }
\end{array}
$$

Digitized by the Internet Archive in 2010 with funding from University of British Columbia Library

By H. S. HALL.

A School Algebra. Crown 8vo. With or without Answers, Part I. 2s. 6d. Part II. 1s. 6d. Parts I. and II. 38. 6d. PartIII. 1s. 6d. Parts II. and III. 2s 6d. Cum. plete. 4s. 6d. Key to Part I. 6s. Key to Parts II. and III. 6s. Key to Complete. 10s.
Examples in Algebra. Taken from Part I. of "A School Algebra." With or without Answers. Crown 8vo. 2s.
Algebraical Examples Supplementary to Hall and Knight's Algebra for Beginners and Elementary Algebra. (Chaps. I.-XXVII.). With or without Answers. Glohe 8vo. 2s.
Short Introduction to Graphical Algebra. Revised Edition. Globe 8vo. Is。 Key, 3s. 6d.
Easy Graphs. Crown 8vo. 18. Key, 3a. 6d. By H. S. HALL and S. R. KNIGHT.
Elementary Algebra for Schools. 3s. 6d. With Answers. Globe 8vo. 4s. 6d. Key, os. 6 d .
Answers to Examples in Elementary Algebra. Fcap. 8vo. Sewed. 18.
Elementary Algebra for Schools (Chapters XXVIII.-XLIV.). With Answers. Globe 8vo. 2s. 6d.
Algebraical Exercises and Examination Papers. With or without Answers. Globe 8vo. 2s. 6d.
Higher Algebra. A Sequel to Elementary Algebra for Schools. Cr. 8vo. 7s. 6d. Key, 10s. 6 d .
Algebra for Beginners. Globe 8vo. 2s. With Answers. 2s. 6d.
Answers to Algebra for Beginners and Easy Graphs. Globe 8vo. Sewed, 6d.
Arithmetical Exercises and Examination Papers. With or without Answers, Globe 8 vo .2 s .6 d .
Elementary Trigonometry. Globe 8vo. 4s. 6d. Key, 8s. 6d.
By H. S. HALL and F. H. STEVENS.
A Text-Book of Euclid's Elements. Containing Books I.-VI., XI., and XII. Props. 1 and 3. Globe 8vo. 4s. 6d. Or separately
Book I. 1s. Books III. and IV. 2s.
Books I. and II. 1s. 6d.
Books II, and III. 2s.
Books I.-III., 2s. 6d.; sewed, 2 s .
Books I.-IV., 3s.; sewed, 2s. 6d.
Books III.-VI. 3s.
Books IV.-VI. 2s. 6d.
Books V., VI., XI., and XII., 1 and 3. Book XI. 1s.
[2s. 6id.
A Key to the Exercises and Examples contained in a Text-Book of Euclid's Elements. Cr. 8vo. Books 1.-VI. and XI. 8s. 6d. Books I.-1V. 6s. 6d. Books VI. and XI. 3s. 6d.

A School Geometry, based on the recommendations of the Mathematical Association, and on the recent report of the Cambridge Syndicate on Geometry. Crown 8vo.

Parts I. \& II. 1s. 6d. Key, 3s. 6d.
Part I. Separately. 1s.
Part II. Separately. 6d.
Part III. 1 s .
Parts I., II., and III. 2s. 6d.
Part IV. Sewed, 6d.
Parts III. and IV. 1s. 6d.
Parts I. to IV. 3s. Key, 6s.

Part V. 18. 6d.
Parts III., IV., and V. 2s. 6d.
Parts IV. and V. 28.
Parts I. to V. 4s.
Part VI. 1s. 6 d .
Parts IV.-VI. 2s. 6d.
Key to Parts V. and VI. 3s. 6d.
Parts I.-VI. 4s. 6d. Key, 8s. 6d.

Lessons in Experimental and Practical Geometry. Cr. 8vo. 1s. 6d.
A School Geometry, Parts I. and II., with an Introductory Course of Experimental and Practical Work. Cr. 8vo. 2s. 6d.
An Elementary Course of Mathematics (Arithmetic, Algebra, and Euclid). G1.8vo. 2s. 6 d .
An Elementary Course of Mathematics (Arithmetic, Algebra, and Geometry). G1. 8vo. 2s. 6d.
A School Arithmetic. Crown 8vo. Part I., with Answers, 2s. 6d. ; without Answers, 2s. Key, 4s. 6d. Part II., with Answers, 2s. 6d. ; without Answers, 28. Key, 6s. Complete, with Answers, 4s. 6d. ; without Answers, 3s. 6d. Key, 10s. 6d. Answers Complete, 1 s .
Examples in Arithmetic. Taken from "A School Arithmetic." With or without Answers. Crown 8vo. Part I., 1s. 6d. Part II., 2s. Complete, 3s.

By F. H. STEVENS.
Elementary Mensuration. Globe 8vo. 3s. 6d.
Mensuration for Beginners. Globe 8vo. 1s. 6d.
By H. S. HALL and R. J. WOOD.
Algebra for Elementary Schools. Globe 8vo. Parts I., II., and III., 6d. each. Cloth. 8d. each. Answers to each Part, 4d. each.

A TEXT-BOOK OF EUCLID'S ELEMENTS

MACMILLAN AND CO., Limited
 LONDON • BOMBAY - CALCUTTA
 MELBOURNE

THE MACMILLAN COMPANY
 NEW YORK • BOSTON • CHICAGO
 DALLAS • SAN FRANCISCO

THE MACMILLAN CO. OF CANADA, Ltd TORONTO

EUCLID'S ELEMENTS

4 FOR THE USE OF SCHOOLS
ψ BOOKS I.-VI. and XI.

BY
H. S. HALL MA. FORMERLY SCHOLAR OF CHRIST'S COLLEGE, CAMBRIDGE;
AND
F. H. STEVENS, MA.

FORMERLY SCHOLAR OF QUEEN'S COLLEGE, OXFORD.

5L new edition
$6 b$
Macmillan/and co., Limited ST. MARTIN'S STREET, LONDON $7 \lcm{1915}$

COP YRIGIIT.

First Edition 1888.
Second Edition (Book XI. added), 1889.
Reprinted 1890, 1891, 1892, 1893, 1894, 1895 (twice),
1896, 1897, 1898, 1899.
New Edition 1900.
Reprinted 1901, 1902, 1903, 1904, 1905, 1907, 1908, 1910, 1911, 1913, 1915.

EXTRACT FROM THE PREFACE TO THE FIRST EDITION.

This volume contains the first Six Books and part of the Eleventh Book of Euclid's Elements, together with additional Theorems and Examples, giving the most important elementary developments of Euclidean Geometry.
The text has been carefully revised, and special attention given to those points which experience has shewn to present difficulties to beginners.

In the course of this revision the enunciations have been altered as little as possible: and very few departures have been made from Euclid's proofs; in each case changes have been adopted only where the old text has been generally found a cause of difficulty ; and such changes are for the most part in favour of well-recognised alternatives.

In Book I., for example, the ambiguity has been removed from the Enunciations of Propositions 18 and 19, and the fact that Propositions 8 and 26 establish the complete equality of the two triangles considered has been strongly urged : thus the redundant step has been removed from Proposition 34.

In Book II. Simson's arrangenent of Proposition 13 has been abandoned for a well-known equivalent.

In Book III. Propositions 35 and 36 have been treated generally, and it has not been thought necessary to do more than call attention in a note to the special cases.
These are the chief deviations from the ordinary text as regards method and arrangement of proof ; they are points familiar as difficulties to most teachers, and to name them indicates sufficiently, without further enumeration, the general principles which have guided our revision.

A few alternative proofs of difficult propositions are given for the convenience of those teachers who care to use them.

One purpose of the book is gradually to familiarise the student with the use of legitimate symbols and abbreviations; for a geometrical argument may thus be thrown into a form which is not only more readily seized by an advanced reader, but is useful as a guide to the way in which Euclid's propositions may be handled in written work. On the other hand, we think it very desirable to defer the introduction of symbols until the beginner has learnt that they can only be properly used in Pure Geometry as abbreviations for verbal argument: and we hope thus to prevent the slovenly and inaccurate habits which are very apt to arise from their employment before this principle is fully recognised.

Accordingly in Book I. we have used no contractions or symbols of any kind, though we have introduced verbal alterations into the text wherever it appeared that conciseness or clearness would be gained.

In Book II. abbreviated forms of constantly recurring words are used, and the phrases therefore and is equal to are replaced by the usual symbols.

In the Third and following Books, and in additional matter throughout the whole, we have employed all such signs and abbreviations as we believe to add to the clearness of the reasoning, care being taken that the symbols chosen are compatible with a rigorous geometrical method, and are recognised by the majority of teachers.

If this arrangement should be thought fanciful or wanting in uniformity, we may plead that it is the outcome of long experience in the use of various text-books. For some years, for example, we were accustomed to teach from a symbolical text, but in consequence of the frequent misconceptions and inaccuracies which too great brevity was found to generate among beginners, we were compelled to return to one of the older and unabbreviated editions. The gain to our younger boys was immediate and unmistakeable; but the change has not
been unattended with disadvantage to more advanced students, who on reaching the Third or Fourth Book may not only be safely trusted with a carefully chosen system of abbreviations, but are certainly retarded by the monotonous and lengthy formalities of the old text.

It must be understood that our use of symbols, and the removal of unnecessary verbiage and repetition, by no means implies a desire to secure brevity at all hazards. On the contrary, nothing appears to us more mischievous than an abridgement which is attained by omitting steps, or condensing two or more steps into one. Such uses spring from the pressure of examinations; but an examination is not, or ought not to be, a mere race ; and while we wish to indicate generally in the later books how a geometrical argument may be abbreviated for the purposes of written work, we have not attempted to reduce the propositions to the barest skeleton which a lenient Examiner may be supposed to accept. Indeed it does not follow that the form most suitable for the page of a text-book is also best adapted to examination purposes ; for the object to be attained in each case is entirely different. The text-book should present the argument in the clearest possible manner to the mind of a reader to whom it is new : the written proposition need only convey to the Examiner the assurance that the proposition has been thoroughly grasped and remembered by the pupil.

From first to last we have kept in mind the undoubted fact that a very small proportion of those who study Elementary Geometry, and study it with profit, are destined to become mathematicians in any special sense ; and that, to a large majority of students, Euclid is intended to serve not so much as a first lesson in mathematical reasoning, as the first, and sometimes the only, model of formal argument presented in an elementary education.

This consideration has determined not only the full treatment of the earlier Books, but the retention of the formal, if somewhat cumbrous, methods of Euclid in many places where proofs of greater brevity and mathematical elegance are available.

We hope that the additional matter introduced into the book will provide sufficient exercise for pupils whose study of Euclid is preliminary to a mathematical education.

The questions distributed through the text follow very easily from the propositions to which they are attached, and we think that teachers are likely to find in them all that is needed for an average pupil reading the subject for the first time.

The Theorems and Examples at the end of each Book contain questions of a slightly more difficult type : they have been very carefully classified and arranged, and brought into close connection with typical examples worked out either partially or in full ; and it is hoped that this section of the bnok, on which much thought has been expended, will do something towards removing that extreme want of freedom in solving deductions that is so commonly found even among students who have a good knowledge of the text of Euclid.

To Volumes containing only Books I.-III., or Books I.-IV. an Appendix is added, giving an elementary account of the properties of Pole and Polar, and Radical Axis. In the complete book these subjects, together with a short account of Harmonic Section, Centres of Similitude, and Transversals, appear as Theorems and Examples on Book VI.

Throughout the book we have italicised those deductions on which we desired to lay special stress as being in themselves important geometrical results: this arrangement we think will be useful to teachers who have little time to devote to riders, or who wish to sketch out a suitable course for revision.

H. S. HALL.
F. H. STEVENS.

Clifton, December, 1886.

PREFATORY NOTE TO THE NEW EDITION.

In the present edition the text has received further revision, and the notes have been for the most part re-written, with a view to greater clearness and simplicity.

References to the Definitions being frequent in the text of Book I., the convenience of a standard order has been pointed out to us by many elementary teachers. We have therefore thought it advisable to re-number the Definitions in accordance with Simson's edition. This has involved the insertion of certain definitions hitherto omitted as of slight importance: such insertions have now been printed in subordinate type.

A few typographical improvements have been introduced: notably the italicising of Particular Enunciations. Some changes in pagination have also been effected for the purpose of presenting the whole of a proposition at one view, or of bringing notes and exercises into closer connection with the text to which they refer. Further, the symbols " \therefore " for therefore, and " $=$ " for is equal to are now introduced from the 35th Proposition of Book I.

Groups of Test Questions for Revision have been inserted at various stages. These may be useful to beginners, and suggestive to teachers in framing examination papers, which so often consist of mere monotonous lists of propositions and examples.

One important change has been made. The algebraical treatment of the subject-matter of Book V. has been entirely separated from the stricter general treatment, so as to present in the simplest form such Definitions and Theorems of Proportion as are necessary before entering upon Book VI. This Introduction will be found immediately preceding Book VI. in a chapter called The Elementary Principles of Proportion.

H. S. H.
F. H. S.

February, 1900.8y" 4
B0OK I.
PAGE
Definitions, Postulates, Axioms 1
Section I. Propositions 1-26. 12
Section II. Parallels and Parallelograms. Propositions 27-34 56
Section III. The Areas of Parallelograms and Triangles. Propositions 35-48 72
Theorems and Examples on Book I.
Analysis, Synthesis. 95
I. On the Identical Equality of Triangles 98
II. On Inequalities 101
III. On Parallels 103
IV. On Parallelograms 104
V. Miscellaneous Theorems and Examples 108
VI. On the Concurbence of Straight Lines in a Triangle 110
VII. On the Construction of Triangles with given Parts 115
vIII. On Areas 117
IX. On Loci 122
X. On the Intersection of Loci 125

BOOK II.

PAGE
Definitions, etc. 128
Proposttions 1-14. 130
Theorems and Examples on Book II. 158
BOOK III.
Definitions, etc. 163
Propositions 1-37 167
Note on the Method of Limits as Applied to Tangency 231
Theorems and Examples on Book III.
I. On the Centre and Chords of a Circle 233
II. On the Tangent and the Contact of Circles.
The Common Tangent to Two Circles, Problems on Tangency, Orthogonal Circles 235
IIl On Angles in Segments, and Angles at the Cen- tres and Circumferences of Circles.
The Orthocentre of a Triangle, and Properties of the Pedal Triangle, Loci, Simson's Line 240
IV. On the Circle in Connection with Rectangles. Further Problems on Tangency 251
V. On Maxima and Minima 257
VI. Harder Miscellaneous Examples 264
BOOK IV.
Definitions, 268
Propositions 1-16. 269
Note on Regular Polygons 294
Theorems and Examples on Book IV.
I. On the Triangle and its Circles. Circumscribed, Inscribed, and Escribed Circles, The Nine-Points Circle 297
II. Miscellaneous Examples 303
BOUK V.
PAGE
1)efinitions, 305
Propositions 1-16, 309
Elementary Principles of Proportion.
Introduction to Book VI. 317
BOOK VI.
Definitions 325
Propositions 1-D. 326
Theorems and Examples on Book VI.
I. On Harmonic Section 384
II. On Centres of Similarity and Similitude 388
III. On Pole and Polar 390
IV. On the Radical Axis of Two or More Circles 396
V. On Transversals 399
VI. Miscellaneous Examples on Book VI. 403
BOOK XI.
Definitions 409
Propositions 1-21. 419
Exercises on Book XI. 444
Theorems and Examples on Book XI. 446

BOOK XII.

*** The First Proposition of Book XII. will be found at p. 364, worked out as an Example on Proposition 20 of Book VI., of which it is a development. Prop. 3 of Book XII. is briefly treated as a Corollary to Prop. 1.

EUCLID'S ELEMENTS.

BOOK 1.

Definitions.

1. A point is that which has position, but no magnitude.
2. A line is that which has length without breadth.
3. The extremities of a line are points, and the intersection of two lines is a point.
4. A straight line is that which lies evenly between its extreme points.

Any portion cut off from a straight line is called a segment of it.
5. A surface (or superficies) is that which has length and breadth, but no thickness.
6. The boundaries of a surface are lines.
7. A plane surface is one in which any two points beingtaken, the straight line between them lies wholly in that surface.

A plane surface is frequently referred to simply as a plane.
Note. Euclid regards a point merely as a mark of position, and he therefore attaches to it no idea of size and shape.

Similarly he considers that the properties of a line arise only from its length and position, without reference to that minute breadth which every line must really have if actually drawn, even though the most perfect instruments are used.

The definition of a surface is to be understood in a similar way. н.s.e.
8. A plane angle is the inclination of two lines to one another, which meet together, but are not in the same direction.

[Definition 8 is not required in Euclid's Geometry, the only angles employed by him being those formed by straight lines. See Def. 9.]
9. A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line.

The point at which the straight lines meet is called the vertex of the angle, and the straight lines themselves the arms of the angle.

Note. When there are several angles at one point, each is expressed by three letters, of which the letter that refers to the vertex is put between the other two. Thus the angle contained by the straight lines $O A, O B$ is named the angle $A O B$ or BOA ; and the angle contained by OA,OC is named the angle AOC or COA. But if there is only one angle at a point, it may be expressed by a single letter, as the angle at O .

Of the two straight lines $O B, O C$ shewn in the adjoining diagram, we recognize that $O C$ is more inclined than $O B$ to the straight line $O A$: this we express by saying that the angle $A O C$ is greater than the angle $A O B$. Thus an angle must be regarded as having magnitude.

It must be carefully observed that the size of an angle in no way depends on the length of its arms, Lut only on their inclination to one another.

The angle $A O C$ is the sum of the angles $A O B$ and $B O C$; and $A O B$ is the difference of the angles $A O C$ and $B O C$.
[Another view of an angle is recognized in many branches of mathematics ; and though not employed by Euclid, it is here given because it furnishes more clear!y than any other a conception of what is meant by the magnitude of an angle.

Suppose that the straight line OP in the diagram is capable of revolution about the point O , like the hand of a watch, but in the opposite direction; and suppose that in this way it has passed successively from the position OA to the positions occupied by OB and OC. Such a line must have
 undergone more turning in passing from OA to
$O C$, than in passing from $O A$ to $O B$; and consequently the angle $A O C$ is said to be greater than the angle $A O B$.]

Angles which lie on either side of a common arm are called adjacent angles.

For example, when one straight line OC is drawn from a point in another straight line AB , the angles $\mathrm{COA}, \mathrm{COB}$ are adjacent.

When two straight lines, such as $A B, C D$, cross one another at E, the two angles CEA, BED are said to be vertically opposite. The two angles CEB, AED are also vertically opposite to one another.

10. When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called a perpendicular to it.
11. An obtuse angle is an angle which is greater than a right angle.

12. An acute angle is an angle which is less than a right angle.

[In the adjoining figure the straight line OB may be supposed to have arrived at its present position, from the position occupied by OA, by revolution about the point O in either of the two directions indicated by the arrows: thus two straight lines drawn from a point may be considered as forming two angles (marked (i) and (ii) in the figure), of
 which the greater (ii) is said to be reflex.

If the arms $O A, O B$ are in the same straight line, the angle formed by them on either side is called a straight angle.]

13. A term or boundary is the extremity of anything.
14. Any portion of a plane surface bounded by one or more lines is called a plane figure.

The sum of the bounding lines is called the perimeter of the figure.
Two figures are said to be equal in area when they enclose equal portions of a plane surface.
15. A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another; this point is called the centre of the circle.

16. A radius of a circle is a straight line drawn from the centre to the circumference.
17. A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
18. A semicircle is the figure bounded by a diameter of a circle and the part of the circumference cut off by the diameter.

19. A segment of a circle is the figure bounded by a straight line and the part of the circumference which it cuts off.

20. Rectilineal figures are those which are bounded by straight lines.
21. A triangle is a plane figure bounded by three straight lines.

Any one of the angular points of a triangle may be regarded as its vertex; and the opposite side is then called the base.
22. A quadrilateral is a plane figure bounded by four straight lines.

The straight line which joins opposite angular points in a quadrilateral is called a diagonal.

23. A polygon is a plane figure bounded by more than four straight lines.

Triangles.

24. An equilateral triangle is a triangle whose three sides are equal.

25. An isosceles triangle is a triangle two of whose sides are equal.

26. A scalene triangle is a triangle which has three unequal sides.

27. A right-angled triangle is a triangle which has a right angle.

The side opposite to the right angle in a right-angled triangle is called the hypotenuse.
28. An obtuse-angled triangle is a triangle which has an obtuse angle.

29. An acute-angled triangle is a triangle which has three acute angles.

[It will be seen hereafter (Book I. Proposition 17) that every triangle must have at least two acute angles.]

Quadrilaterals.

30. A square is a four-sided figure which has all its sides equal and all its angles right angles.
[It may be shewn that if a quadrilateral has all its sides equal and one angle a right angle, then all its angles will be rignt angles.]

31. An oblong is a four-sided figure which has all its angles right angles, but not all its sides equal.
32. A rhombus is a four-sided figure which has all its sides equal, but its angles are not right angles.

33. A rhombold is a four-sided figure which has its opposite sides equal to one another, but all its sides are not equal nor ite angles right angles.
34. All other four-sided figures are called trapeziums.

It is usual now to restrict the term trapezium to a quadrilateral which has two of its sides parallel. [See Def. 35.]

35. Parallel straight lines are such as, being in the same plane, do not meet, however far they are produced in either direction.
36. A Parallelogram is a four-sided figure which has its opposite sides parallel.

37. A rectangle is a parallelogram which has one of its angles a right angle.

The Postulates.

Let it be granted,

1. That a straight line may be drawn from any one point to any other point.
2. That a finite, that is to say a terminated, straight line may be produced to any length in that straight line.
3. That a circle may be described from any centre, at any distance from that centre, that is, with a radius equal to any finite straight line drawn from the centre.

Notes on the Postulates.

1. In order to draw the diagrams required in Euclid's Geometry cer'uain instruments are necessary. These are
(i) A ruler with which to draw straight lines.
(ii) A pair of compasses with which to draw circles.

In the Postulates, or requests, Euclid claims the use of these instruments, and assumes that they suffice for the purposes mentioned above.
2. It is important to notice that the Postulates include no means of direct measurement : hence the straight ruler is not supposed to be graduated; and the compasses are not to be employed for transferring distances from one part of a diagram to another.
3. When we draw a straight line from the point A to the point B, we are said to join AB.

To produce a straight line means to prolong or lengthen it.
The expression to describe is used in Geometry in the sense of to draw.

On the Axioms.

The science of Geometry is based upon certain simple statements, the truth of which is so evident that they are accepted without prooif.

These self-evident truths, called by Euclid Common Notions, are known as the Axioms.

General Axioms.

1. Things which are equal to the same thing are equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be taken from equals, the remainders are equal.
4. If equals be added to unequals, the wholes are unequal, the greater sum being that which includes the greater of the unequals.
5. If equals be taken from unequals, the remainders are unequal, the greater remainder being that which is left from the greater of the unequals.
6. Things which are double of the same thing, or of equal things, are equal to one another.
7. Things which are halves of the same thing, or of equal things, are equal to one another.
9.* The whole is greater than its part.
*To preserve the classification of general and geometrical axioms, we have placed Euclid's ninth axiom before the eighth.

Geometrical Axioms.

8. Magnitudes which can be made to coincide with one another, are equal.
9. Two straight lines cannot enclose a space.
10. All right angles are equal.
11. If a straight line meet two straight lines so as to make the interior angles on one side of it together less than two right angles, these straight lines will meet if continually produced on the side on which are the angles which are together less than two right angles.

That is to say, if the two straight lines $A B$ and $C D$ are met by the straight line $E H$ at F and G, in such a way that the angles BFG, DGF are together less than two right angles, it is asserted that $A B$ and $C D$ will meet if continually produced in the direction of B and D.

Notes on the Axioms.

1. The necessary characteristics of an Axiom are
(i) That it should be self-evident ; that is, that its truth should be immediately accepted without proof.
(ii) That it should be fundamental; that is, that its truth should not be derivable from any other truth more simple than itself.
(iii) That it should supply a basis for the establishment of further truths.

These characteristics may be summed up in the following definition.

Definition. An Axiom is a self-evident truth, which neither requires nor is capable of proof, but which serves as a foundation for future reasoning.
2. Euclid's Axioms may be classified as general and geometrical.

General Axioms apply to magnitudes of all kinds. Geometrical Axioms refer specially to geometrical magnitudes, as lines, angles, and figures.
3. Axiom 8 is Euclid's test of the equality of two geometrical magnitudes. It implies that any line, angle, or figure, may be taken up from its position, and without change in size or form, laid down upon a second line, angle, or figure, for the purpose of comparison, and it states that two such magnitudes are equal when one can be exactly placed over the other without overlapping.

This process is called superposition, and the first magnitude is said to be applied to the other.
4. Axiom 12 has been objected to on the double ground that it cannot be considered self-evident, and that its truth may be deduced from simpler principles. It is employed for the first time in the 29th Proposition of Book I., where a short discussion of the difficulty will be found.

Introductory.

1. Little is known of Euclid beyond the fact that he lived about three centuries before Christ (325-285) at Alexandria, where he became famous as a writer and teacher of Mathematics.

Among the works ascribed to him, the best known and most important is The Elements, written in Greek, and consisting of Thirteen Books. Of these it is now usual to read Books I.-IV. and VI. (which deal with Plane Geometry), together with parts of Books XI. and XII. (on the Geometry of Solids). The remaining Books deal with subjects which belong to the theory of Arithmetic.
2. Plane Geometry deals with the properties of all lines and figures that may be drawn upon a plane surface.

Euclid in his first Six Books confines himself to the properties of straight lines, rectilineal figures, and circles.
3. The subject is divided into a number of separate discussions, called propositions.

Propositions are of two kinds, Problems and Theorems.
A Problem proposes to perform some geometrical construction, such as to draw some particular line, or to construct some required figure.

A Theorem proposes to prove the truth of some geometrical statement.
4. A Proposition consists of the following parts :

The General Enunciation, the Particular Enunciation, the Construction, and the Proof.
(i) The General Enunciation is a preliminary statement, describing in general terms the purpose of the proposition.
(ii) The Particular Enunciation repeats in special terms the statement already made, and refers it to a diagram, which enables the reader to follow the reasoning more easily.
(iii) The Construction then directs the drawing of such straight ines and circles as may be required to effect the purpose of a problem, or to prove the truth of a theorem.
(iv) The Proof shews that the object proposed in a problem has been accomplished, or that the property stated in a theorem is true.
5. Euclid's reasoning is said to be Deductive, because by a connected chain of argument it deduces new truths from truths already proved or admitted. Thus each proposition, though in one sense complete in itself, is derived from the Postulates, Axioms, or former propositions, and itself leads up to subsequent propositions.
6. The initial letters Q.e.f., placed at the end of a problem, stand for Quod erat Faciendum, which was to be done.

The letters Q.E.D. are appended to a theorem, and stand for Quoc orat Demonstrandum, which was to be proved.
7. A Corollary is a statement the truth of which follows readily from an established proposition; it is therefore appended to the proposition as an inference or deduction, which usually requires no further proof.
8. The attention of the beginner is drawn to the special use of the future tense in the Particular Enunciations of Euclid's propositions.

The future is only used in a statement of which the truth is about to be proved. Thus: "The triangle ABC shall be equilateral" means that the triangle has yet to be proved equilateral. While, "The triangle ABC is equilateral" means that the triangle has already been proved (or given) equilateral.
9. The following symbols and abbreviations may be employed in writing out the propositions of Book I., though their use is not recommended to beginners.

\therefore	for therefore,	par 1 (or \\|)	for
$=$	parallel,		
$=$	" is, or are, equal to,	par m	" parallelogram,
L	", angle,	sq.	" square,
rt. \angle	", right angle,	rectil.	", rectilineal,
Δ	", triangle,	st. line	" straight line,
perp. ", perpendicular,	pt.	", point;	

and all obvious contractions of words, such as cpp., adj., diag., etc., for opposite, adjacent, diagonal, etc.

SECTION I.

Proposition 1. Problem.

To describe an equilateral triangle on a given finite straight line.

Let $A B$ be the given straight line.
It is required to describe an equilateral triangle on AB .
Construction. With centre A, and radius $A B$, describe
the circle $B C D$.
Post. 3.
With centre B, and radius BA, describe the circle ACE.
Post. 3.
From the point C at which the circles cut one another, draw the straight lines $C A$ and $C B$ to the points A and B. Post. 1.

> Then shall the triangle ABC be equilateral.

Proof. Because A is the centre of the circle $B C D$, therefore $A C$ is equal to $A B$.

Def. 15.
And because B is the centre of the circle ACE, therefore $B C$ is equal to $A B$.
Therefore $A C$ and $B C$ are each equal to $A B$.
But things which are equal to the same thing are equal to one another.

Therefore $A C$ is equal to $B C$.
Therefore $A C, A B, B C$ are equal to one another.
Therefore the triangle ABC is equilateral ;
and it is described on the given straight line AB. Q.E.F.

Proposition 2. Problem.

From a given point to draw a straight line equal to a given straight line.

Let A be the given point, and $B C$ the given straight line. It is required to draw from A a straight line equal to BC .

Construction. Join AB;
 Post. 1.

and on $A B$ describe an equilateral triangle $D A B$. I. 1 . With centre B, and radius BC, describe the circle CGH.

Produce DB to meet the circle CGH at G. Post. 2. With centre D, and radius DG, describe the circle GKF.

Produce DA to meet the circle GKF at F. Post. 2. Then AF shall be equal to BC .

Proof. Because B is the centre of the circle CGH, therefore $B C$ is equal to $B G$.
And because D is the centre of the circle GKF, therefore $D F$ is equal to $D G$.

Def. 15.
And DA, a part of DF, is equal to DB, a part of DG; Def. 24. therefore the remainder $A F$ is equal to the remainder $B G$.

But $B C$ has been proved equal to $B G$;
therefore $A F$ and $B C$ are each equal to $B G$.
And things which are equal to the same thing are equal to one another.
$A x .1$.

Therefore AF is equal to $B C$;

and it has been drawn from the given point A. Q.E.F.

Proposition 3. Problem.

From the greater of two given straight lines to cut off a part equal to the less.

Let $A B$ and C be the two given straight lines, of which $A B$ is the greater.

It is required to cut off from AB a part equal to C .
Construction. From the point A draw the straight line $A D$ equal to C;
I. 2.
and with centre A and radius AD, describe the circle DEF, cutting $A B$ at E.

Then AE shall be equal to C .
Proof. Because A is the centre of the circle DEF, therefore $A E$ is equal to $A D$.

Therefore $A E$ and C are each equal to $A D$.
Therefore $A E$ is equal to C ; $\quad A x .1$. and it has been cut off from the given straight line $A B$.

EXERCISES ON PROPOSITIONS 1 TO 3.

1. If the two circles in Proposition 1 cut one another again at F, prove that $A F B$ is an equilateral triangle.
2. If the two circles in Proposition 1 cut one another at C and F, prove that the figure $A C B F$ is a rhombus.
3. $A B$ is a straight line of given length : shew how to draw from A a line double the length of $A B$.
4. Two circles are drawn with the same centre O, and two radii $O A, O B$ are drawn in the smaller circle. If $O A, O B$ are produced to cut the outer circle at D and E, prove that $A D=B E$.
5. $A B$ is a straight line, and P, Q are two points, one on each side of $A B$. Shew how to find points in $A B$, whose distance from P is equal to PQ. How many such points will there be ?
6. In the figure of Proposition 2, if $A B$ is equal to $B C$, shew that D, the vertex of the equilateral triangle, will fall on the circumference of the circle CGH.
7. In Proposition 2 the point A may be joined to either extremity of BC. Draw the figure, and prove the proposition in the case when A is joined to C.
8. On a given straight line $A B$ describe an isosceles triangle having each of its equal sides equal to a given straight line PQ.
9. On a given base describe an isosceles triangle having each of its equal sides double of the base.
10. In a given straight line the points A, M, N, B are taken in order. On $A B$ describe a triangle $A B C$, such that the side $A C$ may be equal to $A N$, and the side $B C$ to $B M$.

NOTE ON PROPOSITIONS 2 AND 3.

Propositions 2 and 3 are rendered necessary by the restriction tacitly imposed by Euclid, that compasses shall not be used to transfer distances. [See Notes on the Postulates.]

In carrying out the construction of Prop. 2 the point Λ may be joined to either extremity of the line BC ; the equilateral triangle may be described on either side of the line so drawn; and the sides of the equilateral triangle may be produced in either direction. Thus there are in general $2 \times 2 \times 2$, or eight, possible constructions. The student should exercise himself in drawing the various figures that may arise.

Proposition 4. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, and have also the angles contained by those sides equal, then the triangles shall be equal in all respects; that is to say, their bases or third sides shall be equal, and their remaining angles shall be equal, each to each, namely those to which the equal sides are opposite; and the triangles shall be equal in area.

Let $A B C$, DEF be two triangles, in which the side $A B$ is equal to the side $D E$, the side $A C$ is equal to the side $D F$, and the contained angle BAC is equal to the contained angle EDF.

Then (i) the base BC shall be equal to the base EF ;
(ii) the angle ABC shall be equal to the angle DEF;
(iii) the angle ACB shall be equal to the angle DFE;
(iv) the triangle ABC shall be equal to the triangle DEF in area.
Proof. If the triangle $A B C$ be applied to the triangle DEF; so that the point A may lie on the point D, and the straight line $A B$ along the straight line $D E$; then because $A B$ is equal to $D E$,
therefore the point B must coincide with the point E And because $A B$ falls along $D E$,
and the angle $B A C$ is equal to the angle EDF, Hyp. therefore $A C$ must fall along DF. And because $A C$ is equal to $D F$,
therefore the point C must coincide with the point F.
Then since B coincides with E, and C with F,
therefore the base $B C$ must coincide with the base EF;
for if not, two straight lines would enclose a space ; which is impossible.
$A x .10$.
Thus the base BC coincides with the base EF, and is therefore equal to it. $A x .8$.

And the remaining angles of the triangle $A B C$ coincide with the remaining angles of the triangle DEF, and are therefore equal to them ;
namely, the angle $A B C$ is equal to the angle $D E F$,
and the angle $A C B$ is equal to the angle DFE.
And the triangle $A B C$ coincides with the triangle $D E F$, and is therefore equal to it in area. $A x .8$.
That is, the triangles are equal in all respects. Q.E.D.

Note. The sides and angles of a triangle are known as its six parts. A triangle may also be considered in regard to its area.

Two triangles are said to bee equal in all respects, or identically equal, when the sides and angles of one are respectively equal to the sides and angles of the other. We have seen that such triangles may be made to coincide with one another by superposition, so that they are also equal in area. [See Note on Axiom 8.]
[It will be shewn later that triangles can be equal in area without being equal in their several parts; that is to say, triangles can have the same area without having the same shape.]

EXERCISES ON PROPOSITION 4.

1. $A B C D$ is a square : prove that the diagonals $A C, B D$ are equal to one another.
2. $A B C D$ is a square, and L, M, and N are the middle points of $A B, B C$, and $C D$: prove that
(i) $L M=M N$.
(iii) $\mathrm{AN}=\mathrm{AM}$. (iv) $\mathrm{BN}=\mathrm{DM}$.
[Draw a separate figure in each case.]
3. $A B C$ is an isosceles triangle: from the equal sides $A B, A C$ two equal parts $A X, A Y$ are cut off, and $B Y$ and $C X$ are joined. Prove that $B Y=C X$.
4. $A B C D$ is a quadrilateral having the opposite sides $B C, A D$ equal, and also the angle $B C D$ equal to the angle $A D C$: prove that $B D$ is equal to $A C$.

Proposition 5. Theorem.

The angles at the base of an isosceles triangle are equal to one another; and if the equal sides be produced, the angles on the other side of the base shall also be equal to one another.

Let $A B C$ be an isosceles triangle, in which the side $A B$ is equal to the side $A C$, and let the straight lines $A B, A C$ be produced to D and E.

Then (i) the angle ABC shall be equal to the angle ACB ;
(ii) the angle CBD shall be equal to the angle BCE .

Construction. In BD take any point F; and from $A E$ cut off a part $A G$ equal to $A F$. I. 3 . Join FC, GB.

Proof. Then in the triangles FAC, GAB,
Because $\left\{\begin{array}{c}\text { FA is equal to } G A, \\ \text { and } A C \text { is equal to } A B, \\ \text { also the contained angle at } A \text { is common to the } \\ \text { two triangles: }\end{array}\right.$
therefore the triangle $F A C$ is equal to the triangle $G A B$ in
all respects ;
I. 4.
that is, the base $F C$ is equal to the base $G B$, and the angle $A C F$ is equal to the angle $A B G$, also the angle AFC is equal to the angle AGB.

Again, because AF is equal to AG,
and $A B$, a part of $A F$, is equal to $A C$, a part of $A G$; Hyp. therefore the remainder $B F$ is equal to the remainder CG.

Then in the two triangles BFC, CGB,
Because $\left\{\begin{array}{cc}\text { BF is equal to } \mathrm{CG}, & \text { Proved. } \\ \text { and } \mathrm{FC} \text { is equal to GB, } & \text { Proved. } \\ \text { also the contained angle BFC } \\ \text { contained angle CGB, } & \end{array}\right.$ therefore the triangle BFC is equal to the triangle CGB in all respects ;
I. 4.
so that the angle $F B C$ is equal to the angle GCB,
and the angle BCF to the angle CBG.
Now it has been shewn that the angle $A B G$ is equal to the angle $A C F$,
and that the angle CBG, a part of ABG, is equal to the angle BCF, a part of ACF;
therefore the remaining angle $A B C$ is equal to the remaining angle ACB ;
$A x .3$. and these are the angles at the base of the triangle $A B C$.
Also it has been shewn that the angle $F B C$ is equal to the angle GCB;
and these are the angles on the other side of the base. Q.E.D.
Corollary. Hence if a triangle is equilateral it is also equiangular.

Nore. The difficulty which beginners find with this proposition arises from the fact that the triangles to be compared overlap one another in the diagram. This difficulty may be diminished by detaching each pair of triangles from the rest of the figure, as shewn in the margin.

Proposition 6. Theorem.

If two angles of a triangle be equal to one another, then the sides also which subtend, or are opposite to, the equal angles, shall be equal to one another.

Let ABC be a triangle, in which the angle $A B C$ is equal to the angle $A C B$.
Then shall the side AC be equal to the side AB .
Construction. For if $A C$ be not equal to $A B$, one of them must be greater than the other.

If possible, let $A B$ be the greater; and from it cut off $B D$ equal to $A C$.
I. 3. Join DC.

Proof. Then in the triangles $D B C, A C B$,

$$
D B \text { is equal to } A C \text {, }
$$

Constr.
Because and BC is common to both, also the contained angle DBC is equal to the contained angle ACB ;

Нур.
therefore the triangle $D B C$ is equal to the triangle $A C B$
in area,
I. 4.
the part equal to the whole ; which is absurd. $A x .9$. Therefore $A B$ is not unequal to $A C$; that is, $A B$ is equal to $A C$.
Q.E.D.

Corollary. Hence if a triangle is equiangular it is also equilateral.

NOTE ON PROPOSITIONS 5 AND 6.

The enunciation of a theorem consists of two clauses. The first clause tells us what we are to assume, and is called the hypothesis; the second tells us what it is required to prove, and is called the conclusion.

For example, the enunciation of Proposition 5 assumes that in a certain triangle ABC the side $\mathrm{AB}=$ the side AC : this is the hypothesis. From this it is required to prove that the angle $A B C=$ the angle $A C B$: this is the conclusion.

If we interchange the hypothesis and conclusion of a theorem, we enunciate a new theorem which is called the converse of the first.

For example, in Prop. 5
it is assumed that
$A B=A C$;
it is required to prove that the angle $A B C=$ the angle $A C B$.
Now in Prop. 6
it is assumed that the angle $A B C=$ the angle $A C B ;\}$
it is required to prove that $A B=A C$.
Thus we see that Prop. 6 is the converse of Prop. 5 ; for the hypothesis of each is the conclusion of the other.

In Proposition 6 Euclid employs for the first time an indirect method of proof frequently used in geometry. It consists in shewing that the theorem cannot be untrue; since, if it were, we should be led to some impossbble conclusion. This form of proof is known as Reductio ad Absurdum, and is most commonly used in demonstrating the converse of some foregoing theorem.

The converse of all true theorems are not themselves necessarily true. [See Note on Prop 8.]

EXERCISES ON PROPOSITION 5.

1. $A B C D$ is a rhombus, in which the diagonal $B D$ is drawn : shew that
(i) the angle $A B D=$ the angle $A D B$;
(ii) the angle $C B D=$ the angle $C D B$;
(iii) the angle $A B C=$ the angle $A D C$.
2. $A B C, D B C$ are two isosceles triangles drawn on the same base $B C$, but on opposite sides of it : prove (by means of 1.5) that the angle $A B D=$ the angle $A C D$.
3. $A B C, D B C$ are two isosceles triangles drawn on the same base $B C$ and on the same side of it: employ 1.5 to prove that the angle $A B D=$ the angle $A C D$.

Proposition 7. Theorem.

On the same base, and on the same side of $i t$, there cannot be two triangles having their sides which are terminated at one extremity of the base equal to one another, and likewise those which are terminated at the other extremity equal to one another.

If it be possible, on the same base $A B$, and on the same side of it, let there be two triangles $A C B, A D B$ in which
the side $A C$ is equal to the side $A D$, and also the side $B C$ is equal to the side $B D$.
Case I. When the vertex of each triangle is without the other triangle.

Construction.

Join CD.

Proof. Then in the triangle $A C D$, because $A C$ is equal to $A D$,

Нур.
therefore the angle $A C D$ is equal to the angle $A D C$. I. 5. But the whole angle $A C D$ is greater than its part, the angle $B C D$;
therefore also the angle $A D C$ is greater than the angle $B C D$; still more then is the angle BDC greater than the angle $B C D$.

Again, in the triangle $B C D$, because $B C$ is equal to $B D$,

Hyp. therefore the angle $B D C$ is equal to the angle $B C D$: I. 5 . but it was shewn to be greater; which is impossible.

Case II. When one of the vertices, as D, is within the other triangle ACB .

Construction. As before, join CD ; and produce $A C, A D$ to E and F.

Proof. Then in the triangle $A C D$,
because $A C$ is equal to $A D$, Hyp.
therefore the angle ECD is equal to the angle FDC,
these being the angles on the other side of the base. I. 5. But the angle ECD is greater than its part, the angle $B C D$; therefore the angle FDC is also greater than the angle

BCD :
still more then is the angle BDC greater than the angle BCD.

> Again, in the triangle $B C D$, because $B C$ is equal to $B D$,
therefore the angle $B D C$ is equal to the angle $B C D$: I. 5. but it has been shewn to be greater ; which is impossible.

The case in which the vertex of one triangle is on a side of the other needs no demonstration.

Therefore $A C$ cannot be equal to $A D$, and at the same time, $B C$ equal to $B D$.
Q.E.D.

Note. The sides AC, AD are called conterminous sides ; similarly the sides $B C, B D$ are conterminous.

Proposition 8. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise their bases equal, then the angle which is contained by the two sides of the one shall be equal to the angle which is contained by the two sides of the other

Let $A B C$, DEF be two triangles, in which the side $A B$ is equal to the side $D E$, the side $A C$ is equal to the side $D F$, and the base $B C$ is equal to the base $E F$.

Then shall the angle BAC be equal to the angle EDF.
Proof. If the triangle $A B C$ be applied to the triangle $D E F$, so that the point B falls on the point E , and the base BC along the base EF ;
then because $B C$ is equal to $E F$, Hyp.
therefore the point C must coincide with the point F.
Then since BC coincides with EF, it follows that $B A$ and $A C$ must coincide with $E D$ and $D F$: for if they did not, but took some other position, as EG, GF, then on the same base EF, and on the same side of it, there would be two triangles EDF, EGF, having their conterminous sides equal : namely $E D$ equal to $E G$, and $F D$ equal to $F G$. But this is impossible.
I. 7.

Therefore the sides BA, AC coincide with the sides ED, DF. That is, the angle BAC coincides with the angle EDF, and is therefore equal to it.

Note 1. In this Proposition the three sides of one triangle are given equal respectively to the three sides of the other; and from this it is shewn that the two triangles may be made to coincide with one another.

Hence we are led to the following important Corollary.
Corollary. If in two triangles the three sides of the one are equal to the three sides of the other, each to each, then the triangles are equal in all respects.
[An alternative proof, which is independent of Prop. 7, will be found on page 26.]

Note 2. Proposition 8 furnishes an instance of a true theorem of which the converse is not necessarily true.

It is proved above that if the sides of one triangle are severally equal to the sides of another, then the angles of the first triangle are severally equal to the angles of the second.

The converse of this enunciation would be as follows: If the angles of one triangle are severally equal to the angles of another, then the sides of the first triangle are equal to the sides of the second.

But this, as the diagram in the margin shews, is by no means necessarily true.

EXERCISES ON PROPOSITION 8.

1. Shew (by drawing a diagonal) that the opposite angles of a rhombus are equal.
2. If $A B C D$ is a quadrilateral, in which $A B=C D$ and $A D=C B$, prove that the angle $A D C=$ the angle $A B C$.
3. If $A B C$ and $D B C$ are two isosceles triangles drawn on the same base $B C$, prove (by means of I. 8) that the angle $A B D=$ the angle $A C D$, taking (i) the case where the triangles are on the same side of $B C$, (ii) the case where they are on opposite sides of BC.
4. If $A B C, D B C$ are two isosceles triangles drawn on opposite sides of the same base BC, and if AD be joined, prove that each of the angles $\mathrm{BAC}, \mathrm{BDC}$ will be divided into two equal parts.
5. If in the figure of Ex. 4 the line $A D$ meets $B C$ in E, prove that $B E=E C$.

Proposition 8. Alternative Proof.

Let $A B C$ and $D E F$ be two triangles, which have the sides $B A, A C$ equal respectively to the sides $E D, D F$, and the base $B C$ equal to the base EF.

Then shall the angle BAC be equal to the angle EDF.
For apply the triangle $A B C$ to the triangle $D E F$, so that B may fall on E, and $B C$ along $E F$, and so that the point A may be on the side of EF remote from D;
then C must fall on F, since $B C$ is equal to $E F$.
Let GEF be the new position of the triangle ABC. Join DG.

Case I. When DG intersects EF.

$$
\begin{aligned}
\text { Then because } E D & =E G, \\
\therefore \quad \text { the angle } E D G & =\text { the angle EGD. } \\
\text { Again because } F D & =F G, \\
\therefore \quad \text { the angle } F D G & =\text { the angle } F G D .
\end{aligned}
$$

Hence the whole angle EDF = the whole angle EGF ; $A x .2$. that is, the angle $E D F=$ the angle $B A C$.

Two cases remain which may be dealt with in a similar manner : namely,

Case II. When DG meets EF produced.

Case III. When one pair of sides, as DF, FG are in one straight line.

QUESTIONS AND EXERCISES FOR REVISION.

1. Define auljacent angles, a right angle, vertically opposite angles.
2. Explain the words enunciation, hypothesis, conclusion.
3. Distinguish between the meanings of the following statements:
(i) then AB is equal to PQ ;
(ii) then $A B$ shall be equal to $P Q$.
4. When are two theorems said to be converse to one another. Give an example.
5. Shew by an example that the converse of a true theorem is not itself necessarily true.
6. What is a corollary? Quote the corollary to Proposition 5; and shew how its truth follows from that proposition.
7. Name the six parts of a triangle. When are triangles said to be equal in all respects?
8. What do you understand by the expression geometrical magnitudes? Give examples?
9. What is meant by superposition? Explain the test by which Euclid determines if two geometrical magnitudes are equal to one another. Illustrate by an example.
10. Quote and explain the third postulate. What restrictions does Euclid impose on the use of compasses, and what problems are thereby made necessary?
11. Define an axiom. Quote the axioms referred to (i) in Pro. position 2 ; (ii) in Proposition 7.
12. Prove by the method of superposition that two squares are equal in area, if a side of one is equal to a side of the other.
13. Two quadrilaterals $A B C D, E F G H$ have the sides $A B, B C$, $C D, D A$ equal respectively to the sides EF, FG, GH, HE, and have also the angle BAD equal to the angle FEH. Shew that the figures may be made to coincide with one another.
14. $A B, A C$ are the equal sides of an isosceles triangle $A B C$; and L, M, N are the middle points of $A B, B C$, and $C A$ respectively : prove that
(i) $\mathrm{LM}=\mathrm{MN}$.
(ii) $\mathrm{BN}=\mathrm{CL}$.
(iii) the angle $A L M=$ the angle $A N M$.

Proposition 9. Problem.

To bisect a given rectilineal angle, that is, to divide it into two equal parts.

Let BAC be the given angle. It is required to bisect the angle BAC.

Construction. In $A B$ take any point D;

$$
\begin{aligned}
& \text { and from } A C \text { cut off } A E \text { equal to } A D \text {. I. } 3 . \\
& \text { Join } D E \text {; }
\end{aligned}
$$

and on $D E$, on the side remote from A, describe an equilateral triangle DEF.

Then shall the straight line AF bisect the angle BAC .
Proof. For in the two triangles DAF, EAF,
Because $\left\{\begin{array}{c}\text { DA is equal to EA, } \\ \text { and AF is common to both; } \\ \text { and the third side DF is equal to the third side } \\ \text { EF; } \\ \text { Def. } 24 .\end{array}\right.$
therefore the angle DAF is equal to the angle EAF. I. 8. Therefore the given angle BAC is bisected by the straight line AF.
Q.E.F.

EXERCISES.

1. If in the above figure the equilateral triangle DFE were described on the same side of $D E$ as A, what different cases would arise ? And under what circumstances would the construction fail?
2. In the same figure, shew that AF also bisects the angle DFE.
3. Divide an angle into four equal parts.

Proposition 10. Problem.

To bisect a given finite straight line, that is, to divide it into two equal parts.

Let $A B$ be the given straight line. It is required to divide AB into two equal parts.
Constr. On $A B$ describe an equilateral triangle $A B C$; I. 1. and bisect the angle $A C B$ by the straight line $C D$, meeting $A B$ at D.
I. 9 .

Then shall AB be bisected at the point D .
Proof. For in the triangles $A C D, B C D$,
$A C$ is equal to $B C$,
Def. 24.
Because $\{$ and $C D$ is conmon to both ;
also the contained angle $A C D$ is equal to the contained angle $B C D$;

Constr. therefore the triangle $A C D$ is equal to the triangle $B C D$ in all respects :
so that the base $A D$ is equal to the base $B D$.
Therefore the straight line $A B$ is bisected at the point D.
Q.E.F.

EXERCISES.

1. Shew that the straight line which bisects the vertical angle of an isosceles triangle, also bisects the base.
2. On a given base describe an isosceles triangle such that the sum of its equal sides may be equal to a given straight line.

Proposition 11. Problem.

To draw a straight line at right angles to a given straight line, from a given point in the same.

Let $A B$ be the given straight line, and C the given point in it.

It is required to draw from \mathbf{C} a straight line at right angles to AB .

Construction. In AC take any point D, and from $C B$ cut off $C E$ equal to $C D$.
I. 3 .

On DE describe the equilateral triangle DFE. I. 1. Join CF.
Then shall CF be at right angles to AB .
Proof. For in the triangles DCF, ECF,
Because $\left\{\begin{array}{c}\text { DC is equal to } E C, \\ \text { and } C F \text { is common to both; } \\ \text { and the third side DF is equal to the third side } \\ E F: \\ \text { Def. } 24 .\end{array}\right.$
Because $\left\{\begin{array}{c}\text { DC is equal to } E C, \\ \text { and } C F \text { is common to both; } \\ \text { and the third side DF is equal to the third side } \\ E F: \\ \text { Def. } 24 .\end{array}\right.$
therefore the angle DCF is equal to the angle ECF: I. 8 . and these are adjacent angles.
But when one straight line, standing on another, makes the adjacent angles equal, each of these angles is called a right angle ;

Def. 10.
therefore each of the angles DCF, ECF is a right angle.
Therefore CF is at right angles to $A B$, and has been drawn from a point C in it.

EXERCISE.

In the figure of the above proposition, shew that any point in $F C$, or FC produced, is equidistant from D and E.

Proposition 12. Problem.

To draw a straight line perpendicular to a given straight line of unlimited length, from a given point without it.

Let $A B$ be the given straight line of unlimited length, and let C be the given point without it.

It is required to draw from \mathbf{C} a straight line perpendicular to AB .

Construction. On the side of $A B$ remote from C take any point D;
and with centre C, and radius CD, describe the circle FDG, cutting $A B$ at F and G

Bisect FG at H ;

1. 10. and join CH .

> Then shall CH be perpendicular to AB .
> Join CF and CG .

Proof. Then in the triangles FHC, GHC,

> FH is equal to GH ,
> Constr.
> Because $\left\{\begin{array}{l}\text { and } \mathrm{HC} \text { is common to both; } \\ \text { and the third side } \mathrm{CF} \text { is equal to the third side }\end{array}\right.$ CG, being radii of the circle FDG; Def. 15.

therefore the angle CHF is equal to the angle CHG ; I. 8. and these are adjacent angles.
But when one straight line, standing on another, makes the adjacent angles equal, each of these angles is called a right angle, and the straight line which stands on the other is called a perpendicular to it.

Def. 10.
Therefore CH is perpendicular to $A B$,
and has been drawn from the point C without it. Q.E.F.
Note. The line $A B$ must be of unlimited length, that is, capable of production to an indefinite length in either direction, to ensure its being intersected in two points by the circle FDG.

QUESTIONS AND EXERCISES FOR REVISION.

1. Distinguish between a problem and a theorem.
2. When are two figures said to be identically equal? Under what conditions has it so far been proved that two triangles are identically equal?
3. Explain the method of proof known as Reductio ad Absurdum. Quote the enunciations of the propositions in which this method has so far been used.
4. Quote the corollaries of Propositions 5 and 6, and shew that each is the converse of the other.
5. What is meant by saying that Euclid's reasoning is deductive? Shew, for instance, that the proof of Proposition 5 is a deductive argument.
6. Two forts defend the mouth of a river, one on each side; the forts are 4000 yards apart, and their guns have a range of 3000 yards. Taking one inch to represent a length of 1000 yards, draw a diagram shewing what part of the river is exposed to the fire of both forts.
7. Define the perimeter of a rectilineal figure. A square and an equilateral triangle each have a perimeter of 3 feet: compare the lengths of their sides.
8. Shew how to draw a rhombus each of whose sides is equal to a given straight line $P Q$, which is also to be one diagonal of the figure.
9. A and B are two given points. Shew how to draw a rhomius having A and B as opposite vertices, and having each side equal to a given line PQ. Is this always possible ?
10. Two circles are described with the same centre O ; and two radii $O A, O B$ are drawn to the inner circle, and produced to cut the outer circle at D and E : prove that

$$
\begin{equation*}
D B=E A ; \tag{i}
\end{equation*}
$$

(ii) the angle $B A D=$ the angle $A B E$;
(iii) the angle $O D B=$ the angle $O E A$.

EXERCISES ON PROPOSITIONS 1 TO 12.

1. Shew that the straight line which joins the vertex of an isosceles triangle to the middle point of the base is perpendicular to the base.
2. Shew that the straight lines which join the extremities of the base of an isosceles triangle to the middle points of the opposite sides, are equal to one another.
3. Two given points in the base of an isosceles triangle are equidistant from the extremities of the base : shew that they are also equidistant from the vertex.
4. If the opposite sides of a quadrilateral are equal, shew that the opposite angles are also equal.
5. Any two isosceles triangles $X A B, Y A B$ stand on the same base $A B$: shew that the angle $X A Y$ is equal to the angle $X B Y$; and if $X Y$ be joined, that the angle $A X Y$ is equal to the angle $B X Y$.
6. Shew that the opposite angles of a rhombus are bisected by the diagonal which joins them.
7. Shew that the straight lines which bisect the base angles of an isosceles triangle form with the base a triangle which is also isosceles.
8. $A B C$ is an isosceles triangle having $A B$ equal to $A C$; and the angles at B and C are bisected by straight lines which meet at O : shew that OA bisects the angle BAC.
9. Shew that the triangle formed by joining the middle points of the sides of an equilateral triangle is also equilateral.
10. The equal sides $B A, C A$ of an isosceles triangle $B A C$ are produced beyond the vertex A to the points E and F, so that $A E$ is equal to $A F$; and $F B, E C$ are joined: shew that $F B$ is equal to $E C$.
11. Shew that the diagonals of a rhombus bisect one another at right angles.
12. In the equal sides $A B, A C$ of an isosceles triangle $A B C$ two points X and Y are taken, so that $A X$ is equal to $A Y$; and $C X$ and BY are drawn intersecting in O : shew that
(i) the triangle $B O C$ is isosceles ;
(ii) $A O$ bisects the vertical angle $B A C$;
(iii) $A O$, if produced, bisects $B C$ at right angles.
13. Describe an isosceles triangle, having given the base and the length of the perpendicular drawn from the vertex to the base.
14. In a given straight line find a point that is equidistant from two given points. In what case is this impossible?

Proposition 13. Theorem.

The adjacent angles which one straight line makes with another straight line, on one side of it, are either two right angles or are together equal to two right angles.

Let the straight line $A B$ meet the straight line $D C$.
Then the adjacent angles DBA, ABC shall be either two right angles, or together equal to two right angles.

Case I. For if the angle DBA is equal to the angle $A B C$, each of them is a right angle.

Def. 10.
Case II. But if the angle DBA is not equal to the angle ABC,
from B draw $B E$ at right angles to $C D$.
I. 11.

Proof. Now the angle DBA is made up of the two angles DBE, EBA ; to each of these equals add the angle $A B C$;
then the two angles $D B A, A B C$ are together equal to the three angles DBE, EBA, ABC.
Again, the angle EBC is made up of the two angles EBA, ABC ;
to each of these equals add the angle DBE ;
then the two angles $D B E, E B C$ are together equal to the three angles DBE, EBA, ABC.
But the two angles DBA. ABC have been shewn to be equal to the same three angles;
therefore the angles $D B A, A B C$ are together equal to the angles DBE, EBC.
But the angles DBE. EBC are two right angles ; Constr. therefore the angles $D B A, A B C$ are together equal to two right angles.
Q.E.D.

DEFINITIONS.

(1) The complement of an acute angle is its defect from a right angle, that is, the angle by which it falls short of a right angle.

Thus two angles are complementary, when their sum is a right angle.
(ii) The supplement of an angle is its defect from two right angles, that is, the angle by which it falls short of two right angles.

Thus two angles are supplementary, when their sum is two right angles.

Corollary. Angles which are complementary or supplementary to the same angle are equal to one another.

EXERCISES.

1. If the two exterior angles formed by producing a side of a triangle both ways are equal, shew that the triangle is isosceles.
2. The bisectors of the adjacent angles which one straight line makes with another contain a right angle.

Note In the adjoining diagram $A O B$ is a given angle; and one of its arms $A O$ is produced to C : the adjacent angles AOB, BOC are bisected by OX, OY.

Then OX and OY are called respectively the internal and external bisectors of the angle AOB.

Hence Exercise 2 may be thus
 enunciated:

The internal and external bisectors of an angle are at right angles to one another.
3. Shew that the angles $A O X$ and COY are complementary.
4. Shew that the angles BOX and COX are supplementary ; and also that the angles AOY and BOY are supplementary.

Proposition 14. Theorem.

If, at a point in a straight line, two other straight lines, on opposite sides of it, make the adjacent angles together equal to two right angles, then these two straight lines shall be in one and the same straight line.

At the point B in the straight line $A B$, let the two straight lines $B C, B D$, on the opposite sides of $A B$, make the adjacent angles $A B C, A B D$ together equal to two right angles.

Then BD shall be in the same straight line with BC .
Proof. For if $B D$ be not in the same straight line with $B C$, if possible, let $B E$ be in the same straight line with $B C$.

Then because $A B$ meets the straight line CBE,
therefore the adjacent angles $C B A, A B E$ are together equal to two right angles.
I. 13.

But the angles CBA, ABD are also together equal to two right angles.
Therefore the angles CBA, ABE are together equal to the angles CBA, ABD.
From each of these equals take the common angle CBA ; then the remaining angle $A B E$ is equal to the remaining angle
ABD ; the part equal to the whole; which is impossible.
Therefore $B E$ is not in the same straight line with $B C$.
And in the same way it may be shewn that no other line but $B D$ can be in the same straight line with $B C$.

Therefore BD is in the same straight line with BC. Q.E.D.

EXERCISE.

$A B C D$ is a rhombus; and the diagonal $A C$ is bisected at O. If O is joined to the angular points B and D; shew that $O B$ and $O D$ are in one straight line.

Proposition 15. Theorem.

If two straight lines intersect one another, then the vertically opposite angles shall be equal.

Let the two straight lines $A B, C D$ cut one another at the point E .

Then (i) the angle AEC shall be equal to the angle DEB;
(ii) the angle CEB shall be equal to the angle AED.

Proof. Because AE meets the straight line CD, therefore the adjacent angles CEA, AED are together equal to two right angles.
I. 13.

Again, because DE meets the straight line $A B$,
therefore the adjacent angles $A E D, D E B$ are together equal to two right angles.
I. 13.

Therefore the angles CEA, AED are together equal to the angles $A E D, D E B$.
From each of these equals take the common angle AED; then the remaining angle CEA is equal to the remaining angle DEB. $A x .3$.

In the same way it may be proved that the angle CEB is equal to the angle AED. Q.E.D.

Corollary 1. From this it follows that, if two straight lines cut one another, the four angles so formed are together equal to four right angles.

Corollary 2. Consequently, when any number of straight lines meet at a point, the sum of the angles made by consecutive lines is equal to four right angles.

Proposition 16. Theorem.

If one side of a triangle be produced, then the exterior angle shall be greater than either of the interior opposite angles.

Let $A B C$ be a triangle, and let $B C$ be produced to D.
Then shall the exterior angle ACD be greater than either of the interior opposite angles $\mathrm{ABC}, \mathrm{BAC}$.

Construction. Bisect AC at E;
I. 10.

Join $B E$; and produce it to F, making $E F$ equal to BE. I. 3. Join FC.
Proof. Then in the triangles AEB, CEF,
Because $\left\{\begin{array}{c}A E \text { is equal to } C E, \\ \text { and } \mathrm{EB} \text { is equal to } \mathrm{EF} ;\end{array} \quad \begin{array}{c}\text { Constr. }\end{array}\right.$
Because $\left\{\begin{array}{c}A E \text { is equal to } C E, \\ \text { and } \mathrm{EB} \text { is equal to } \mathrm{EF} ;\end{array} \quad \begin{array}{c}\text { Constr. }\end{array}\right.$ also the angle AEB is equal to the vertically opposite angle CEF ;
I. 15.
therefore the triangle $A E B$ is equal to the triangle CEF in
all respects :
I. 4.
so that the angle BAE is equal to the angle ECF.
But the angle ECD is greater than its part, the angle ECF ; therefore the angle $E C D$ is greater than the angle $B A E$; that is, the angle $A C D$ is greater than the angle $B A C$.
In the same way, if $B C$ be bisected, and the side $A C$ produced to G, it may be proved that the angle BCG is greater than the angle ABC.

But the angle BCG is equal to the angle ACD: I. 15. therefore also the angle $A C D$ is greater than the angle $A B C$.

Proposition 17. Theorem.

Any two angles of a triangle are toqether less than two right angles.

Let $A B C$ be a triangle.
Then shall any two of the angles of the triangle $A B C$ be together less than two right angles.
Construction. Produce the side BC to D.
Proof. Then because BC, a side of the triangle $A B C$, is produced to D;
therefore the exterior angle $A C D$ is greater than the interior opposite angle $A B C$.
I. 16.

To each of these add the angle ACB :
then the angles $A C D, A C B$ are together greater than the angles $A B C, A C B$.
$A x .4$.
But the adjacent angles $A C D, A C B$ are together equal to two right angles.
I. 13.

Therefore the angles $A B C, A C B$ are together less than two right angles.
Similarly it may be shewn that the angles $B A C, A C B$, as also the angles $C A B, A B C$, are together less than two right angles.
Q.E.D.

Note. It follows from this Proposition that every triangle must have at least two acute angles: for if one angle is obtuse, or a right angle, each of the other angles must be less than a right angle.

EXERCISES.

1. Enunciate this Proposition so as to shew that it is the converse of Axiom 12.
2. If any side of a triangle is produced both ways, the exterior angles so formed are together greater than two right angles.
3. Shew how a proof of Proposition 17 may be obtained by joining each vertex in turn to any point in the opposite side.

Proposition 18. Theorem.

If one side of a triangle be greater than another, then the angle opposite to the greater side shall be greater than the angle opposite to the less.

Let $A B C$ be a triangle, in which the side $A C$ is greater than the side $A B$.

Then shall the angle ABC be greater than the angle ACB .
Construction. From $A C$ cut off a part $A D$ equal to $A B$. I. 3. Join BD.

Proof. Then in the triangle ABD, because $A B$ is equal to $A D$,
therefore the angle $A B D$ is equal to the angle $A D B$. I. 5.
But the exterior angle $A D B$ of the triangle $D C B$ is greater than the interior opposite angle DCB, that is, greater than the angle ACB.
I. 16.

Therefore also the angle ABD is greater than the angle ACB; still more then is the angle ABC greater than the angle ACB.

Euclid enunciated Proposition 18 as follows:
The greater side of every triangle has the greater angle opposite to it.
[This form of enunciation is found to be a common source of difficulty with beginners, who fail to distinguish what is assumed in it and what is to be proved. If Euclid's enunciations of Props. 18 and 19 are adopted, it is important to remember that in each case the part of the triangle first named points out the hypothesis.]

Proposition 19. Theorem.

If one angle of a triangle be greater than another, then the side opposite to the greater angle shall be greater than the side opposite to the less.

Let $A B C$ be a triangle in which the angle $A B C$ is greater than the angle ACB.

Then shall the side AC be greater than the side AB .
Proof. For if $A C$ be not greater than $A B$,
it must be either equal to, or less than $A B$.
But $A C$ is not equal to $A B$,
for then the angle $A B C$ would be equal to the angle $A C B ;$ I. 5. but it is not.

Нур.
Neither is $A C$ less than $A B$;
for then the angle $A B C$ would be less than the angle $A C B ;$ I. 18 . but it is not.

Hyp.
That is, $A C$ is neither equal to, nor less than $A B$.
Therefore $A C$ is greater than $A B$. Q.E.D.

Note. The mode of demonstration used in this Proposition is known as the Proof by Exhaustion. It is applicable to cases in which one of certain suppositions must necessarily be true; and it consists in shewing that each of these suppositions is false with one exception : hence the truth of the remaining supposition is inferred.

Euclid enunciated Proposition 19 as follows :
The greater angle of every triangle is subtended by the greater side, or, has the greater side orposite to it.
[For Exercises on Props. 18 and 19 see page 44.]

Proposition 20. Theorem.

Any two sides of a triangle are together greater than the third side.

Let $A B C$ be a triangle.
Then shall any two of its sides be together greater than the third side:
namely, BA, AC, shall be greater than CB ;
AC, CB shall be greater than BA ;
and CB, BA shall be greater than AC .
Construction. Produce BA to D, making AD equal to AC. I. 3. Join DC.

Proof. Then in the triangle ADC, because $A D$ is equal to $A C$, Constr.
therefore the angle $A C D$ is equal to the angle $A D C$. I. 5. But the angle $B C D$ is greater than its part the angle $A C D$; therefore also the angle $B C D$ is greater than the angle $A D C$, that is, than the angle BDC.
And in the triangle $B C D$,
because the angle $B C D$ is greater than the angle $B D C$, therefore the side BD is greater than the side CB. I. 19.

But $B A$ and $A C$ are together equal to $B D$;
therefore $B A$ and $A C$ are together greater than $C B$.
Similarly it may be shewn
that $A C, C B$ are together greater than $B A$;
and $C B, B A$ are together greater than $A C$. Q.E.D.
[For Exercises see page 44.]

Proposition 21. Theorem.

If from the ends of a side of a triangle, there be drawn two straight lines to a point within the triangle, then these straight lines shall be less than the other two sides of the triangle, but shall contain a greater angle.

Let $A B C$ be a triangle, and from B, C, the ends of the side $B C$, let the straight lines $B D, C D$ be drawn to a point D within the triangle
Then (i) BD and DC shall be together less than BA and AC ;
(ii) the angle BDC shall be greater than the angle BAC.

Construction. Produce BD to meet AC in E.
Prool (i) In the triangle $B A E$, the two sides $B A, A E$ are together greater than the third side $B E$;
I. 20 . to each of these add EC ;
then BA, AC are together greater than $\mathrm{BE}, \mathrm{EC} . A x .4$. Again, in the triangle DEC, the two sides DE, EC are together greater than DC ;
I. 20 .
to each of these add BD;
then $B E, E C$ are together greater than $B D, D C$.
But it has been shewn that BA, AC are together greater than $B E, E C$:
still more then are $B A, A C$ greater than $B D, D C$.
(ii) Again, the exterior angle $B D C$ of the triangle DEC is greater than the interior opposite angle DEC ;
I. 16. and the exterior angle DEC of the triangle BAE is greater than the interior opposite angle BAE, that is, than the angle BAC;
I. 16.
still more then is the angle BDC greater than the angle BAC.
Q.E.D.

EXERCISES. on Propositions 18 and 19.

1. The hypotenuse is the greatest side of a right-angled triangle.
2. If two angles of a triangle are equal to one another, the sides also, which subtend the equal angles, are equal to one another. Prove this [i.e. Prop. 6] indirectly by using the result of Prop. 18.
3. $B C$, the base of an isosceles triangle $A B C$, is produced to any point D; shew that $A D$ is greater than either of the equal sides.
4. If in a quadrilateral the greatest and least sides are opposite to one another, then each of the angles adjacent to the least side is greater than its opposite angle.
5. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn through the vertex A and terminated by the base $B C$, is less than $A B$.
6. $A B C$ is a triangle, in which $O B, O C$ bisect the angles $A B C$, $A C B$ respectively : shew that, if $A B$ is greater than $A C$, then $O B$ is greater than OC.

on Proposttion 20.

7. The difference of any two sides of a triangle is less than the third side.
8. In a quadrilateral, if two opposite sides which are not parallel are produced to meet one another ; shew that the perimeter of the greater of the two triangles so formed is greater than the perimeter of the quadrilateral.
9. The sum of the distances of any point from the three angular points of a triangle is greater than half its perimeter.
10. The perimeter of a quadrilateral is greater than the sum of its diagonals.
11. Obtain a proof of Proposition 20 by bisecting an angle by a straight line which meets the opposite side.

on Proposition 21.

12. In Proposition 21 shew that the angle $B D C$ is greater than the angle $B A C$ by joining $A D$, and producing it towards the base.
13. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.

QUESTIONS FOR REVISION.

1. Define the complement of an angle." When are two angles said to be supplementary? Shew that two angles which are supplementary to the same angle are equal to one another.
2. What is meant by an angle being bisected internally and externally?

Prove that the internal and external bisectors of an angle are at right angles to one another.
3. Prove that the sum of the angles formed by any number of straight lines drawn from a point is equal to four right angles.
4. Why must every triangle have at least two acute angles? Quote the enunciation of the proposition from which this inference is drawn.
5. In the enunciation The greater side of a triangle has the greater angle opposite to $i t$, point out what is assumed and what is to be proved.
6. What is meant by the Proof by Exhaustion? Illustrate the use of this method by naming the steps in the proof of Proposition 19 .
7. What inference may be drawn respecting the triangles whose sides measure
(i) 4 inches, 5 inches, 4 inches;
(ii) 8 inches, 9 inches, 10 inches;
(iii) 6 inches, 10 inches, 4 inches?
8. Quote the enunciations of propositions which, from a hypothesis relating to the sides of triangle, establish a conclusion relating to the angles.
9. Quote the enunciations of propositions which, from a hypothesis relating to the angles of a triangle, establish a conclusion relating to the sides.
10. Explain why parallel straight lines must be in the same plane.
11. Prove by means of Prop. 7 that on a given base and on the same side of it only one equilateral triangle can be drawn.
12. In an isosceles triangle, if the equal sides are produced, shew that the angles on the other side of the base must be obtuse.

Proposition 22. Problem.

To describe a triangle having its sides equal to three given straight lines, any two of which are together greater than the third.

Let A, B, C be the three given straight lines, of which any two are together greater than the third.

It is required to describe a triangle of which the sides shall be equal to $\mathrm{A}, \mathrm{B}, \mathrm{C}$
Construction. Take a straight line DE terminated at the point D, but unlimited towards E.
Make DF equal to A, F equal to B, and $G H$ equal to C. I. 3.
With centre F and radius $F D$, describe the circle DLK. With centre G and radius GH, describe the circle MHK cutting the former circle at K .

Join FK, GK.
Then shall the triangle KFG have its sides equal to the three straight lines A, B, C.

Proof. Because F is the centre of the circle DLK, therefore FK is equal to FD: Def. 15. but $F D$ is equal to A; Constr. therefore also FK is equal to A. $A x$. 1 .
Again, because G is the centre of the circle MHK, therefore GK is equal to GH:

Therefore the triangle KFG has its sides KF, FG, GK equal respectively to the three given lines $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
Q.E.F.

Proposition 23. Problem.

At a given point in a given straight line, to make an angle equal to a given rectilineal angle.

Let $A B$ be the given straight line, and A the given point in it, and let LCM be the given angle.

It is required to draw from A a straight line making with AB an angle equal to the given angle DCE.

Construction. In CL, CM take any points D and E; and join DE.
From $A B$ cut off $A F$ equal to $C D$.
I. 3 .

On AF describe the triangle FAG, having the remaining sides AG, GF equal respectively to CE, ED.
I. 22.

Then shall the angle FAG be equal to the angle DCE.
Proof. For in the triangles FAG, DCE,
$F A$ is equal to $D C$,
Constr.
Constr. and the base FG is equal to the base DE: Constr. therefore the angle $F A G$ is equal to the angle DCE. I. $8 .{ }^{\circ}$
That is, $A G$ makes with $A B$, at the given point A, an angle equal to the given angle $D C E$.

EXERCISE.

On a given base describe a triangle, whose remaining sides shall be equal to two given straight lines. Point out how the construction fails, if any one of the three given lines is greater than the sum of the other two.

Proposition 24. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, but the angle contained by the two sides of one greater than the angle contained by the corresponding sides of the other; then the base of that which has the greater angle shall be greater than the base of the other.

Let $A B C$, DEF be two triangles, in which the side $B A$ is equal to the side $E D$,
and the side $A C$ is equal to the side $D F$, but the angle $B A C$ is greater than the angle EDF.
Then shall the base BC be greater than the base EF .
Of the two sides $D E, D F$, let $D E$ be that which is not greater than the other.*

Construction. At D in the straight line ED, and on the same side of it as $D F$, make the angle EDG equal to the angle BAC.

> Make DG equal to DF or $A C$; and join $E G, G F$.

Proof. Then in the triangles BAC. EDG,
Because $\left\{\begin{array}{cr}\text { BA is equal to } E D, & \text { Hyp. } \\ \text { and } A C \text { is equal to } D G, & \text { Constr. } \\ \text { also the contained angle } B A C & \text { is equal } \\ \text { to the } \\ \text { contained angle EDG; }\end{array}\right.$
therefore the triangle BAC is equal to the triangle EDG in all respects :
I. 4.
so that the base $B C$ is equal to the base $E G$.

Again, in the triangle FDG, because DG is equal to DF,
therefore the angle DFG is equal to the angle DGF. I. 5 .
But the angle DGF is greater than its part the angle EGF ; therefore also the angle DFG is greater than the angle EGF, suill more then is the angle EFG greater than the angle EGF.

And in the triangle EFG,
because the angle EFG is greater than the angle EGF, therefore the side EG is greater than the side EF; I. 19.
but $E G$ was shewn to be equal to $B C$;
therefore $B C$ is greater than $E F$ Q.E.D.

* The object of this step is to make the point F fall below EG: Otherwise F might fall above, upon, or below EG; and each case would require separate treatment. But as it is not proved that this condition fulfils its object, this demonstration of Prop. 24 must be considered defective.

An alternative construction and proof are given below.

Construction. At D in ED make the angle EDG equal to the angle BAC ; and make DG equal to DF. Join EG.

Then, as before, it may be shewn that the triangle $E D G=$ the triangle $B A C$ in all respects.

Now if EG passes through F, then $E G$ is greater than EF ; that is, BC is greater than EF。

But if not, bisect the angle FDG by DK, meeting EG at K. Join FK.

Proof. Then in the triangles $\overline{\mathrm{F}} \mathrm{DK}, \mathrm{GDK}$,

$$
\text { Because }\left\{\begin{array}{c}
\text { FD=GD, } \\
\text { and } D K \text { is common to both, } \\
\text { and the angle FDK = the angle GDK ; Constr. } \\
\therefore F K=G K .
\end{array}\right.
$$

But in the triangle EKF, the two sides EK, KF are greater than EF; that is, EK, KG are greater than EF. Hence $E G$ (or $B C$) is greater than $E F$.

Proposition 25. Theorem.

If two triangles have two sides of the one equal to two sides of the other, each to each, but the base of one greater than the buse of the other; then the angle contained by the sides of that which has the greater hase, shall be greater than the angle contained by the corresponding sides of the other.

Let ABC, DEF be two triangles in which the side $B A$ is equal to the side $E D$, and the side $A C$ is equal to the side $D F$, but the base $B C$ is greater than the base $E F$.
Then shall the angle BAC be greater than the angle EDF.
Proof. For if the angle BAC be not greater than the angle $E D F$, it must be either equal to, or less than the angle EDF.

But the angle BAC is not equal to the angle EDF, for then the base $B C$ would be equal to the base $E F$; I. 4. but it is not.

Hyp.
Neither is the angle BAC less than the angle EDF,
for then the base BC would be less than the base EF ; I. 24. but it is not.
Therefore the angle BAC is neither equal to, nor less than the angle EDF;
that is, the angle BAC is greater than the angle EDF. Q.E.D.

EXERCISE.

In a triangle $A B C$, the vertex A is joined to X, the middle point of the base $B C$; shew that the angle $A X B$ is obtuse or acute, according as $A B$ is greater or less than $A C$.

Proposition 26. Theorem.

If two triangles have two angles of the one equal to two angles of the other, each to each, and a side of one equal to a side of the other, these sides being either adjacent to the equal angles, or opposite to equal angles in each; then shall the triangles be equal in all respects.

Case I. When the equal sides are adjacent to the equal angles in the two triangles.

Let $A B C, D E F$ be two triangles, in which the angle $A B C$ is equal to the angle $D E F$, and the angle $A C B$ is equal to the angle $D F E$, and the side $B C$ is equal to the side $E F$.
Then shall the triangle ABC be equal to the triangle DEF in all respects; that is, AB shall be equal to DE , and AC to DF , and the angle BAC shall be equal to the angle EDF.
For if $A B$ be not equal to $D E$, one must be greater than the other. If possible, let $A B$ be greater than $D E$.

Construction. From BA cut off BG equal to ED,
I. 3. and join GC.

Proof. Then in the two triangles $\mathrm{GBC}, \mathrm{DEF}$, GB is equal to $D E$, Constr.
Because $\left\{\begin{array}{l}\text { and } \mathrm{BC} \text { is equal to } \mathrm{EF},\end{array}\right.$ Hyp. contained angle DEF;

Hyp.
therefore the triangle GBC is equal to the triangle DEF ir all respects ;
I. 4.
so that the angle GCB is equal to the angle DFE.
But the angle ACB is equal to the angle DFE; Hyp. therefore also the angle GCB is equal to the angle ACB; $A x$.1.
the part equal to the whole, which is impossible.

Therefore $A B$ is not unequal to $D E$; that is, $A B$ is equal to $D E$.
Hence in the triangles $A B C, D E F$,

therefore the triangle $A B C$ is equal to the triangle $D E F$ in all respects :
I. 4.
so that the side $A C$ is equal to the side $D F$; and the angle BAC is equal to the angle EDF.
Q.E.D.

Case II. When the equal sides are opposite to equal angles in the two triangles.

Let $A B C, D E F$ be two triangles, in which the angle $A B C$ is equal to the angle $D E F$, and the angle $A C B$ is equal to the angle $D F E$, and the side $A B$ is equal to the side $D E$.
Then the triungle ABC shall be equal to the triangle DEF in all respects;
namely, BC stuall be equal to EF , and AC shall be equal to DF , and the angle BAC shall be equal to the angle EDF.

For if BC be not equal to EF , one must be greater than the other. If possible, let BC be greater than EF.

Construction. From BC cut off BH equal to EF, I. 3.
Proof. Then in the triangles ABH, DEF,
Because $\left\{\begin{array}{cc}\text { AB is equal to } D E, & \begin{array}{c}\text { Hyp. } \\ \text { and } B H \text { is equal to } E F,\end{array} \\ \text { also the contained angle ABH } \\ \text { contained angle DEF; }\end{array}\right.$
Because $\left\{\begin{array}{cc}\text { AB is equal to } D E, & \begin{array}{c}\text { Hyp. } \\ \text { and } B H \text { is equal to } E F,\end{array} \\ \text { also the contained angle ABH } \\ \text { contained angle DEF; }\end{array}\right.$
therefore the triangle $A B H$ is equal to the triangle $D E F$ in all respects ;
I. 4.
so that the angle $A H B$ is equal to the angle DF5.
But the angle DFE is equal to the angle ACB; Hyp. therefore the angle AHB is equal to the angle ACB ; $A x .1$. that is, an exterior angle of the triangle $A C H$ is equal to an interior opposite angle ; which is impossible.
I. 16.

Therefore $B C$ is not unequal to $E F$, that is, $B C$ is equal to $E F$.
Hence in the triangles $A B C, D E F$,

$$
A B \text { is equal to } D E \text {, }
$$

Hyp.
Because $\left\{\begin{aligned} \text { and } B C \text { is equal to } E F ; & \text { Proved. } \\ \text { also the contained angle ABC is equal } & \text { to the } \\ \text { contained angle DEF; } & \text { Hyp. }\end{aligned}\right.$ therefore the triangle $A B C$ is equal to the triangle DEF in all respects ;
so that the side $A C$ is equal to the side $D F$, and the angle BAC is equal to the angle EDF.
Q.E.D.

Corollary. In both cases of this Proposition it is seen that the triangles may be made to coincide with one another ; and they are therefore equai in area.

ON THE IDENTICAL EQUALITY OF TRIANGLES.

Three cases have been already dealt with in Propositions 4, 8, and 26 , the results of which may be summarized as follows:

Two triangles are equal in all respects when the following three parts in each are severally equal :

1. Two sides, and the included angle.

Prop. 4.
2. The three sides.

Prop. 8, Cor.
3. (a) Two angles, and the adjacent side ;
(b) Two angles, and a side opposite one of them. $\}$ Prop. 26.

Two triangles are not, however, necessarily equal in all respects when any three parts of one are equal to the corresponding parts of the other. For example
(i) When the three angles of one are equal to the three angles of the other, each to each, the adjoining diagram shews that the triangles need not be equal in all respects.

(ii) When two sides and one angle in one are equal to two sides and one angle in the other, the given angles being opposite to equal sides, the diagram shews that the triangles need not be equal in all respects.

For it will be seen that if $A B=D E$, and $A C=D F$, and
 the angle $A B C=$ the angle $D E F$, then the shorter of the given sides in the triangle $D E F$ may lie in either of the positions DF or DF'.

In cases (i) and (ii) a further condition must be given before we can prove that the two triangles are identically equal.

We observe that in each of the three cases in which two triangles have been proved equal in all respects, namely in Propositions 4, 8 , 26 , it is shewn that the triangles may be made to coincide with one another; so that they are equal in area. Euclid however restricted himself to the use of Prop. 4, when he required to deduce the equality in area of two triangles from the equality of certain of their parts. This restriction is now generally abandoned.

EXERCISES ON PROPOSITIONS 12-26.

1. If $B X$ and $C Y$, the bisectors of the angles at the base $B C$ of an isosceles triangle $A B C$, meet the opposite sides in X and Y, shew that the triangles $Y B C, X C B$ are equal in all respects.
2. Shew that the perpendiculars drawn from the extremities of the base of an isosceles triangle to the opposite sides are equal.
3. Any point on the bisector of an angle is equidistant from the arms of the angle.
4. Through O, the middle point of a straight line $A B$, any straight line is drawn, and perpendiculars $A X$ and $B Y$ are dropped upon it from A and B : shew that $A X$ is equal to $B Y$.
5. If the bisector of the vertical angle of a triangle is at right angles to the base, the triangle is isosceles.
6. The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line; and of others, that which is nearer to the perpendicular is less than the more remote; and two, and only two equal straight lines can be drawn from the given point to the given straight line, one on each side of the perpendicular.
7. From two given points on the same side of a given straight line, draw two straight lines, which shall meet in the given straight line, and make equal angles with it.

Let $A B$ be the given straight line, and P, Q the given points.

It is required to draw from P and Q to a point in $A B$, two straight lines that shall be equally inclined to $A B$.

Construction. From P draw PH perpendicular to $A B$: produce $P H$ to
 P, making $H P^{\prime}$ equal to $P H$. Draw $Q P^{\prime}$, meeting $A B$ in K. Join PK.

Then PK, QK shall be the required lines. [Supply the proof.]
8. In a given straight line find a point which is equidistant from two given intersecting straight lines. In what case is this impossible?
9. Through a given point draw a straight line such that the perpendiculars drawn to it from two given points may be equal.

In what case is this impossible?

SECTION II.

PARALLEL STRAIGHT LINES AND PARALLELOGRAMS.

Definition. Parallel straight lines are such as, being in the same plane, do not meet however far they are produced in both directions.

When two straight lines $A B, C D$ are met by a third straight line EF, eight angles are formed, to which for the sake of distinction particular names are given.

Thus in the adjoining figure, $1,2,7,8$ are called exterior angles, $3,4,5,6$ are called interior angles, 4 and 6 are said to be alternate angles; so also the angles $\mathbf{3}$ and 5 are alternate to one another.
Of the angles 2 and 6,2 is referred to as
 the exterior angle, and 6 as the interior opposite angle on the same side of EF.

2 and 6 are sometimes called corresponding angles.
So also, 1 and 5, 7 and 3, 8 and 4 are corresponding angles.
Euclid's treatment of parallel straight lines is based upon his twelfth Axiom, which we here repeat.

Axiom 12. If a straight line cut two straight lines so as to make the two interior angles on the same side of it together less than two right angles, these straight lines, being continually produced, will at length meet on that side on which are the angles which are together less than two right angles.

Thus in the figure given above, if the two angles 3 and 6 are together less than two right angles, it is asserted that $A B$ and $C D$ will meet towards B and D.

This Axiom is used to establish I. 29 : some remarks upon it will be found in a note on that Proposition.

Proposition 27. Theorem.

If a straight line, falling on two other straight lines, make the alternate angles equal to one another, then these two straight lines shall be parallel.

Let the straight line $E F$ cut the two straight lines $A B$, $C D$ at G and H, so as to make the alternate angles $A G H$, GHD equal to one another.

Then shall AB and CD be parallel.
Proof. For if $A B$ and $C D$ be not parallel, they will meet, if produced, either towards B and D, or towards A and C .
If possible, let $A B$ and $C D$, when produced, meet towards B and D, at the point K.
Then KGH is a triangle, of which one side KG is produced to A ;
therefore the exterior angle AGH is greater than the interior opposite angle GHK.
I. 16.

But the angle AGH was given equal to the angle GHK : Hyp. hence the angles AGH and GHK are both equal and unequal ; which is impossible.
Therefore $A B$ and $C D$ cannot meet when produced towards B and D.
Similarly it may be shewn that they cannot meet towards A and C :
therefore $A B$ and $C D$ are parallel.

Proposition 28. Theorem.

If a straight line, falling on two other straight lines, make an exterior angle equal to the interior opposite angle on the same side of the line; or if it make the interior angles on the same side together equal to two right angles, then the two straight lines shall be parallel.

Let the straight line $E F$ cut the two straight lines $A B$, $C D$ in G and H : and

First, let the exterior angle EGB be equal to the interior opposite angle GHD.

Then shall AB and CD be parallel.
Proof. Because the angle EGB is equal to the angle GHD ; and because the angle EGB is also equal to the vertically opposite angle AGH ;
I. 15.
therefore the angle AGH is equal to the angle GHD;
but these are alternate angles;
therefore $A B$ and $C D$ are parallel. I. 27 .
Q.E.D.

Secondly, let the two interior angles BGH, GHD be together equal to two right angles.

Then shall AB and CD be parallel.
Proof. Because the angles BGH, GHD are together equal to two right angles ; Hyp. and because the adjacent angles BGH, AGH are also together equal to two right angles;
I. 13.
therefore the angles $B G H, A G H$ are together equai to the two angles BGH, GHD.

From these equals take the common angle BGH:
then the remaining angle AGH is equal to the remaining angle GHD : and these are alternate angles; therefore $A B$ and $C D$ are paralle'
I. 27. Q.E.D.

Proposition 29. Theorem.

If a straight line fall on two parallel straight lines, then $i t$ shall make the alternate angles equal to one another, and the exterion angle equal to the interior opposite angle on the same side: and also the two interior angles on the same side equal to two right angles.

Let the straight line EF fall on the parallel straight lines $A B, C D$.
Then (i) the angle AGH shall be equal to the alternate angle GHD ;
(ii) the exterior angle EGB shall be equal to the interior opposite angle GHD ;
(iii) the two interior angles BGH, GHD shall be together equal to two right angles.
Proof. (i) For if the angle AGH be not equal to the angle GHD, one of them must be greater than the other.
If possible, let the angle AGH be greater than the angle GHD ;

add to each the angle $B G H$:

then the angles AGH, BGH are together greater than the angles BGH, GHD.
But the adjacent angles AGH, BGH are together equal to two right angles;
I. 13.
therefore the angles BGH, GHD are together less than two right angles ;
therefore, by Axiom 12, AB and CD meet towards B and D.
But they never meet, since they are parallel. Hyp.
Therefore the angle AGH is not unequal to the angle GHD: that is, the angle AGH is equal to the alternate angle GHD.

(ii) Again, because the angle AGH is equal to the vertically opposite angle EGB;
I. 15. and because the angle AGH is equal to the angle GHD ;
therefore the exterior angle EGB is equal to the interior opposite angle GHD.
(iii) Lastly, the angle EGB is equal to the angle GHD ;

Proved.

$$
\text { add to each the angle } \mathrm{BGH} \text {; }
$$

then the angles $E G B, B G H$ are together equal to the angles BGH, GHD.
But the adjacent angles EGB, BGH are together equal to two right angles : therefore also the two interior angles $B G H$, GHD are together equal to two right angles. Q.E.D.

EXERCISES ON PROPOSITIONS 27, 28, 29.

1. Two straight lines $A B, C D$ bisect one another at O : shew that the straight lines joining $A C$ and $B D$ are parallel.
[1. 27.]
2. Straight lines which are perpendicular to the same straight line are parallel to one another.
[1. 27 or 1. 28.]
3. If a straight line meet two or more parallel straight lines, and is perpendicular to one of them, it is also perpendicular to all the others.
[1. 29.]
4. If two straight lines are parallel to two other straight lines, each to each, then the angles contained by the first pair are equal respectively to the angles contained by the second pair.
[1. 29.]

Note on the Twelfth Axiom.

Euclid's twelfth Axiom is unsatisfactory as the basis of a theory of parallel straight lines. It camat be regarded as either simple or self-evident, and it therefore falls short of the essential characteristics of an axiom: nor is the difficulty entirely removed by considering it as a corollary to Proposition 17, of which it is the converse.

Of the many substitutes which have been proposed, we need only notice the following:

Axiom. Two intersecting straight lines cannot be both parallel to a third straight line.

This statement is known as Playfair's Axiom ; and though it is not altogether free from objection, it is no doubt simpler and more funclamental than that employed by Euclid, and more readily admitted without proof.

Propositions 27 and 28 having been proved in the usual way, the first part of Proposition 29 is then given thus.

Proposition 29. [Alternative Proof.]

If a straight line fall on two parallel straight lines, then it shall make the alternate angles equal.

Let the straight line EF meet the two parallel straight lines $A B$, CD at G and H .
Then shall the alternate angles AGH, GHD be equal.
For if the angle AGH is not equal to the angle GHD :
at G in the straight line HG make the angle HGP equal to the angle GHD, and alternate to it.
I. 23.

Then PG and CD are paralleí. But $A B$ and $C D$ are parallel : I. 27.
 therefore the two intersecting straight lines AG, PG are both parallel to $C D$:
which is impossible.
Playfair's Axiom.
Therefore the angle AGH is not unequal to the angle GHD ; that is, the alternate angles $A G H, G H D$ are equal. Q.E.D.
The second and third parts of the Proposition may then be deduced as in the text ; and Euclid's Axiom 12 follows as a Corollary.

Proposition 30. Theorem.

Straight lines which are parallel to the same straight line are parallel to one another.

Let the straight lines $A B, C D$ be each parallel to the straight line PQ.

Then shall AB and CD be parallel to one another.
Construction. Draw any straight line EF cutting AB, $C D$, and $P Q$ in the points G, H, and K.

Proof. Then because $A B$ and $P Q$ are parallel, and EF meets them, therefore the angle AGK is equal to the alternate angle GKQ I. 29.

And because CD and PQ are parallel, and EF meets them, therefore the exterior angle GHD is equal to the interior opposite angle GKQ.
I. 29.

Therefore the angle AGH is equal to the angle GHD and these are alternate angles ; therefore $A B$ and $C D$ are parallel,

1. 27.

Q.E.D.

Note. If PQ lies between $A B$ and $C D$, the Proposition may be established in a similar manner, though in this case it scarcely needs proof; for it is inconceivable that two straight lines, which do not meet an intermediate straight line, shouid ineet one another.

The truth of this Proposition may be readily deduced from Playfair's Axiom, of which it is the converse.

For if $A B$ and $C D$ were not parallel, they would meet when produced. Then there would be two intersecting straight lines both parallel to a third straight line : which is impossible.

Therefore $A B$ and $C D$ never meet ; that is, they are parallel.

Proposition 31. Problem.

To draw a straight line through a given point parallel to a given straight line.

Let A be the given point, and $B C$ the given straight line. It is required to draw through A a straight line parallel to BC .
Construction. In BC take any point D; and join AD. At the point A in DA, make the angle DAE equal to the angle ADC, and alternate to it,

Proof. Because the straight line AD, meeting the two straight lines EF, BC, makes the alternate angles EAD, ADC equal ;

EXERCISES.

1. Any straight line drawn parallel to the base of an isosceles triangle makes equal angles with the sides.
2. If from any point in the bisector of an angle a straight line is drawn parallel to either arm of the angle, the triangle thus formed is isosceles.
3. From a given point draw a straight line that shail make with a given straight line an angle equal to a given angle.
4. From X, a point in the base $B C$ of an isosceles triangle $A B C$, a straight line is drawn at right angles to the base, cutting $A B$ in Y, and $C A$ produced in Z : shew the triangle $A Y Z$ is isosceles.
5. If the straight line which bisects an exterior angle of a triangle is parallel to the opposite side, shew that the triangle is isosceles.

Proposition 32. Theorem.

If a side of a triangle be produced, then the exterior angle shall be equal to the sum of the two interior opposite angles; also the three interior angles of a triangle are together equal to two right angles.

Let $A B C$ be a triangle, and let one of its sides $B C$ be produced to D.
Then (i) the exterior angle ACD shall be equal to the sum of the two interior opposite angles $\mathrm{CAB}, \mathrm{ABC}$;
(ii) the three interior angles $\mathrm{ABC}, \mathrm{BCA}, \mathrm{CAB}$ shall be together equal to iwo right angles.
Construction. Through C draw CE parallel to BA. I. 31.
Proof. (i) Then because BA and CE are parallel, and AC meets them,
therefore the angle $A C E$ is equal to the alternate angle CAB.
I. 29.

Again, because BA and CE are parallel, and BD meets them, therefore the exterior angle ECD is equal to the intericr opposite angle ABC.
I. 29.

Therefore the whole exterior angle $A C D$ is equal to the sum of the two interior opposite angles $C A B, A B C$.
(ii) Again, since the angle $A C D$ is equal to the sum of the angles CAB, ABC ;

Proved. to each of these equals add the angle BCA:
then the angles $B C A, A C D$ are together equal to the three angles $B C A, C A B, A B C$.
But the adjacent angles $B C A, A C D$ are together equal to two right angles.
I. 13.

Therefore also the angles $B C A, C A B, A B C$ are together equal to two right angles. Q.E.D.

From this Proposition we draw the following important inferences.

1. If two triangles have two angles of the one equal to two angles of the other, each to each, then the third angle of the one is equal to the third angle of the other.
2. In any right-angled triangle the two acute angles are complementary.
3. In a right-angled isosceles triangle each of the equal angles is half a right angle.
4. If one angle of a triangle is equal to the sum of the other two, the triangle is right-angled.
5. The sum of the angles of any quadrilateral figure is equal to four right angles.
6. Each angle of an equilateral triangle is two-thirds of a right angle.

EXERCISES ON PROPOSITION 32.

1. Prove that the three angles of a triangle are together equal to two right angles,
(i) by drawing through the vertex a straight line parallel to the base ;
(ii) by joining the vertex to any point in the base.
2. If the base of any triangle is produced both ways, shew that the sum of the two exterior angles diminished by the vertical angle is equal to two right angles.
3. If two straight lines are perpendicular to two other straight lines, each to each, the acute angle between the first pair is equal to the acute angle between the second pair.
4. Every right-angled triangle is divided into two isosceles triangles by a straight line drawn from the right angle to the middlle point of the hypotenuse.

Hence the joining line is equal to half the hypotenuse.
5. Draw a straight line at right angles to a given finite straight line from one of its extremities, without producing the given straight line.

〔Let $A B$ be the given straight line. On $A B$ describe any isosceles triangle $A C B$. Produce $B C$ to D, making $C D$ equal to $B C$. Joiv $A D$. Then shall $A D$ be perpendicular to $A B$.]

[^0]6. Trisect a right angle.
7. The angle contained by the bisectors of the angles at the base of an isosceles triangle is equal to an exterior angle formed by producing the base.
8. The angle contained by the bisectors of two adjacent angles of a quadrilateral is equal to half the sum of the remaining angles.

The following theorems were added as corollaries to Proposition 32 by Robert Simson, who edited Euclid's text in 1756.

Corollary 1. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.

Let $A B C D E$ be any rectilineal figure. Take F, any point within it, and join F to each of the angular points of the figure.
Then the figure is divided into as many triangles as it has sides.
And the three angles of each triangle are together equal to two right angles.
I. 32 .

Hence all the angles of all the triangles are together equal to twice as many right angles as the figure has sides.
But all the angles of all the triangles make up all the interior angles of the figure, together with the angles at F, which are equal to four right angles.
I. 15 , Cor.

Therefore all the interior angles of the figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Q.E.D.

Oorollary 2. If the sides of a rectilineal figure, which has no re-entrant angle, are produced in order, then all the exterior angles so formed are together equal to four right angles.

For at each angular point of the figure, the interior angle and the exterior angle are together equal to two right angles.
I. 13.

Therefore all the interior angles, with all the exterior angles, are together equal to twice as many right angles as the figure has sides.
But all the interior angles, with four right angles, are together equal to twice as many right angles as the figure has sides.
I. 32, Cor. 1.

Therefore all the interior angles, with all the exterior angles, are together equal to all the interior angles, with four right angles.
Therefore the exterior angles are together equal to four right angles.
Q.E.D.

EXERCISES ON SIMSON'S COROLLARIES.

[A polygon is said to be regular when it has all its sides and all its angles equal.]

1. Express in terms of a right angle the magnitude of each angle of (i) a regular hexagon,
(ii) a regular octagon.
2. If one side of a regular hexagon is produced, shew that the exterior angle is equal to the angle of an equilateral triangle.
3. Prove Simson's first Corollary by joining one vertex of the rectilineal figure to each of the other vertices.
4. Find the magnitude of each angle of a regular polygon of n sides.
5. If the alternate sides of any polygon be produced to meet, the sum of the included angles, together with eight right angles, will be equal to twice as many right angles as the figure has sides.

Proposition 33. Theorem.

The straight lines which join the extremities of two equal and parallel straight lines towards the same parts are themselves equal and parallel.

Let $A B$ and $C D$ be equal and parallel straight lines; and let them be joined towards the same parts by the straight lines AC and BD.

Then shall AC and BD be equal and parallel.
Construction. Join BC.
Proof. Then because $A B$ and $C D$ are parallel, and $B C$ meets them,
therefore the angle $A B C$ is equal to the alternate angle DCB.

Now in the triangles $A B C, D C B$,
Because $\left\{\begin{array}{r}\text { AB is equal to DC, } \\ \text { and } B C \text { is common to both; } \\ \text { also the angle } A B C \text { is equal to the angle } \\ \text { DCB ; }\end{array}\right.$ therefore the triangle $A B C$ is equal to the triangle $D C B$ in all respects;
so that the base $A C$ is equal to the base $D B$, and the angle $A C B$ equal to the angle $D B C$.

But these are alternate angles.
Therefore AC and BD are parallel :
I. 27. and it has been shewn that they are also equal.
Q.E.D.

Definition. A Parallelogram is a four-sided figure whose opposite sides are parallel.

Proposition 34. Theorem.

The opposite sides and angles of a parallelogram are equal io one another, and each diagonal bisects the parallelogram.

Let $A C D B$ be a parallelogram, of which $B C$ is a diagonal.
Then shall the opposite sides and angies of the figure be equal to one another ; and the diagonal BC shall bisect it

Proof. Because $A B$ and $C D$ are parallel, and $B C$ meets them, therefore the angle $A B C$ is equal to the alternate angle

DCB ;
I. 29.

Again, because $A C$ and $B D$ are parallel, and $B C$ meets them,
therefore the angle $A C B$ is equal to the alternate angle
DBC.
I. 29 .

Hence in the triangles $A B C, D C B$,
Becsuse $\left\{\begin{array}{l}\text { the angle } A B C \text { is equal to the angle } D C B, \\ \text { and the angle } A C B \text { is equal to the angle } D B C ; \\ \text { also the side } B C \text { is }\end{array}\right.$ also the side $B C$ is common to both;
therefore the triangle $A B C$ is equal to the triangle $D C B$ in all respects ;
I. 26.
so that $A B$ is equal to $D C$, and $A C$ to $D B$;
and the angle $B A C$ is equal to the angle CDB.
Also, because the angle $A B C$ is equal to the angle $D C B$, and the angle CBD equal to the angle BCA,
therefore the whole angle $A B D$ is equal to the whole angle DCA.
And the triangles $A B C, D C B$ having been proved equal in
all respects are equal in area.
Therefore the diagonal BC bisects the parallelogram ACDB. Q.E.D.

EXERCISES ON PAKALLELOGRAMS.

1. If one angle of a parallelogram is a right angle, all its angles are right angles.
2. If the opposite sides of a quadrilateral are equal, the figure is a parallelogram.
3. If the opposite angles of a quadrilateral are equal, the figure is a parallelogram.
4. If a quadrilateral has all its sides equal and one angle a right angle, all its angles are right angles.
5. The diagonals of a parallelogram bisect each other.
6. If the diagonals of a quadrilateral bisect each other, the figure is a parallelogram.
7. If two opposite angles of a parallelogram are bisected by the diagonal which joins them, the figure is equilateral.
8. If the diagonals of a parallelogram are equal, all its angles are right angles.
9. In a parallelogram which is not rectangular the diagonals are unequal.
10. Any straight line drawn through the middle point of a diagonal of a parallelogram and terminated by a pair of opposite sides, is bisected at that point.
11. If two parallelograms have two adjacent sides of one equal to two adjacent sides of the other, each to each, and one angle of one equal to one angle of the other, the parallelograms are equal in all respects.
12. Two rectangles are equal if two adjacent sides of one are equal to two adjacent sides of the other, eaich to each.
13. In a parallelogram the perpendiculars drawn from one pair of opposite angles to the diagonal which joins the other pair are equal.
14. If $A B C D$ is a parallelogram, and X, Y respectively the middle points of the sides $A D, B C$; shew that the figure $A Y C X$ is a parallelogram.

MISCELLANEOUS EXERCISES ON SECTIONS I. AND II.

1. Shew that the construction in Proposition 2 may generally be performed in eight different ways. Point out the exceptional case.
2. The bisectors of two vertically opposite angles are in the same straight line.
3. In the figure of Proposition 16, if AF is joined, shew
(i) that $A F$ is equal to $B C$;
(ii) that the triangle $A B C$ is equal to the triangle $C F A$ in all respects.
4. $A B C$ is a triangle right-angled at B, and $B C$ is produced to D : shew that the angle $A C D$ is obtuse.
5. Shew that in any regular polygon of n sides each angle contains $\frac{2(n-2)}{n}$ right angles.
6. The angle contained by the bisectors of the angles at the base of any triangle is equal to the vertical angle together with half the sum of the base angles.
7. The angle contained by the bisectors of two exterior angles of any triangle is equal to half the sum of the two corresponding interior angles.
8. If perpendiculars are drawn to two intersecting straight lines from any point between them, shew that the bisector of the angle between the perpendiculars is parallel to (or coincident with) the bisector of the angle between the given straight lines.
9. If two points P, Q be taken in the equal sides of an isosceles triangle $A B C$, so that $B P$ is equal to $C Q$, shew that $P Q$ is parallel to BC.
10. $A B C$ and $D E F$ are two triangles, such that $A B, B C$ are equal and parallel to $D E, E F$, each to each ; shew that $A C$ is equal and parallel to DF.
11. Prove the second Corollary to Prop. 32 by drawing through any angular point lines parallel to all the sides.
12. If two sides of a quadrilateral are parallel, and the remaining two sides equal but not parallel, shew that the opposite angles are supplementary; also that the diagonals are equal.

SECTION III.

THE AREAS OF PARALLELOGRAMS AND TRIANGLES.

Hitherto when two figures have been said to be equal, it has been implied that they are identically equal, that is, equal in all respects.

But figures may be equal in area without being equal in all respects, that is, without having the same shape.

The present section deals with parallelograms and triangles which are equal in area but not necessarily identically equal.
[The ultimate test of equality, as we have already seen, is afforded by Axiom 8, which asserts that magnitudes which may be made to coincide with one another are equal. Now figures which are not equal in all respects, cannot be made to coincide without first undergoing some change of form : hence the method of direct superposition is unsuited to the purposes of the present section.

We shall see however from Euclid's proof of Proposition 35, that two figures which are not identically equal, may nevertheless be so related to a third figure, that it is possible to infer the equality of their areas.]

Definitions.

1. The Altitude of a parallelogram with reference to a given side as base, is the perpendicular distance between the base and the opposite side.
2. The Altitude of a triangle with reference to a given side as base, is the perpendicular distance of the opposite vertex from the base.
[From this point the following symbols will be introduced into the text:

$$
=\text { for is equal to } ; \therefore \text { for therefore. }
$$

If it is thought desirable to shorten written work by the use of symbols and abbreviations, it is strongly recommended that only some well recognized system should be allowed, such, for example, as that given on page 11.]

Proposition 35. Theorem.

Parallelograms on the same base, and between the same parallels, are equal in area.

Let the parallelograms $A B C D, E B C F$ be on the same base BC , and between the same parallels BC, AF.

Then shall the parallelogram ABCD be equal in area to the parallelogram EBCF.

Case I. If the sides AD, EF, opposite to the base BC, are terminated at the same point D :
then each of the parallelograms $A B C D, E B C F$ is double of
the triangle BDC ; I. 34. \therefore they are equal to one another. $A x .6$.
Case II. But if the sides AD, EF are not terminated at the same point:
then because $A B C D$ is a parallelogram,
\therefore the side $A D=$ the opposite side $B C$;
I. 34 .
similarly $\mathrm{EF}=\mathrm{BC}$;

$$
\therefore A D=E F .
$$

$A x .1$.
\therefore the whole, or remainder, $E A=$ the whole, or remainder, FD.
Then in the triangles FDC, EAB,
Because $\left\{\begin{array}{c}\text { FD }=\text { EA, } \\ \text { and the side } D C=\text { the opposite side AB, } \\ \text { Proved. } \\ \text { I. } 34 . \\ \text { also the exterior angle } F D C=\text { the interior opposite } \\ \text { angle EAB, }\end{array}\right.$
\therefore the triangle $\mathrm{FDC}=$ the triangle EAB.
I. 4.

From the whole figure $A B C F$ take the triangle FDC; and from the same figure take the equal triangle $E A B$; then the remainders are equal.
$A x .3$. Therefore the parallelogram ABCD is equal to the parallelogram EBCF.

Parallelograms on equal bases, and between the same parallels, are equal in area.

Let $A B C D$, $E F G H$ be parallelograms on equal bases $B C$, FG , and between the same parallels AH, BG.
Then shall the parallelogram ABCD be equal to the parallelogram EFGH.
Construction. Join BE, CH.
Proof. Then because $\mathrm{BC}=\mathrm{FG}$; Hyp. and the side $\mathrm{FG}=$ the opposite side EH ; I. 34. $\therefore \mathrm{BC}=\mathrm{EH}$:

Ax. 1.
and $B C$ is parallel to $E H$; Hyp.
$\therefore \mathrm{BE}$ and CH are also equal and parallel. I. 33. Therefore EBCH is a parallelogram. Def. 36.
Now the parallelograms ABCD, EBCH are on the same base $B C$, and between the same parallels $B C, A H$;
\therefore the parallelogram $A B C D=$ the parallelogram EBCH. I. 35.
Also the parallelograms EFGH, EBCH are on the same base EH , and between the same parallels EH, BG;
\therefore the parallelogram EFGH $=$ the parallelogram EBCH. I. 35.
Therefore the parallelogram $A B C D$ is equal to the parallelogram EFGH.

From the last two Propositions we infer that:
(i) A parallelogram is equal in area to a rectangle of equal base and equal altitude.
(ii) Parallelograms on equal bases and of equal altitudes are equal in area.

Proposition 37. Theorem.

Triangles on the same base, and between the same parallels, are equal in area.

Let the triangles $A B C$, $D B C$ be upon the same base $B C$, and between the same parallels $B C, A D$.

Then shall the triangle ABC be equal to the triangle DBC .

Construction. Through B draw BE parallel to CA, to meet DA produced in E;
I. 31 . through C draw CF parallel to BD, to meet AD produced in F.

Proof. Then, by construction, each of the figures EBCA, DBCF is a parallelogram.

Def. 36. And since they are on the same base $B C$, and between the same parallels BC, EF;
\therefore the parallelogram EBCA $=$ the parallelogram DBCF. I. 35.
Now the diagonal AB bisects EBCA ; I. 34.
\therefore the triangle $A B C$ is half the parallelogram EBCA.
And the diagonal DC bisects DBCF ;
I. 34.
\therefore the triangle DBC is half the parallelogram DBCF.
And the halves of equal things are equal. $A x$. 7 . Therefore the triangle $A B C$ is equal to the triangle $D B C$. Q.E.D.

Proposition 38. Theorem.

Triangles on equal bases, and between the same parallels, are equal in area.

Let the triangles $A B C, D E F$ be on equal bases $B C, E F$, and between the same parallels BF, AD.

Then shall the triangle ABC be equal to the triangle DEF .
Construction. Through B draw BG parallel to CA, to meet DA produced in G; I. 31. through F draw $F H$ parallel to $E D$, to meet AD produced in H .

Proof. Then, by construction, each of the figures GBCA, DEFH is a parallelogram.
\therefore the parallelogram GBCA $=$ the parallelogram DEFH. I. 36.
Now the diagonal AB bisects GBCA ;
I. 34.
\therefore the triangle $A B C$ is half the parallelogram GBCA.
And the diagonal DF bisects DEFH ;
I. 34.
\therefore the triangle DEF is half the parallelogram DEFH.
And the halves of equal things are equal. $A x .7$.
Therefore the triangle ABC is equal to the triangle DEF.
Q.E.D.

From this Proposition we infer that:
(i) Triangles on equal bases and of equal altitude are equal in area.
(ii) Of two triangles of the same altitude, that is the greater which has the greater base; and of two triangles on the same base, m on equal bases, that is the greater which has the greater altitude.

Proposition 39. Theorem.

Equal triangles on the same base, and on the same side of it, are between the same parallels.

Let the triangles $A B C, D B C$ which stand on the same base BC , and on the same side of it be equal in area.
Then shall the triangles ABC, DBC be between the same parallels; that is, if AD be joined, AD shall be parallel to BC .
Construction. For if AD be not parallel to BC, if possible, through A draw AE parallel to BC, I. 31. meeting BD , or BD produced, in E . Join EC.

Proof. Now the triangles $A B C, E B C$ are on the same base $B C$, and between the same parallels $B C, A E$;
\therefore the triangle $A B C=$ the triangle $E B C$.

1. 37.

But the triangle $\mathrm{ABC}=$ the triangle DBC ; Hyp.
\therefore the triangle $\mathrm{DBC}=$ the triangle EBC ;
that is, the whole is equal to a part ; which is impossible.
$\therefore A E$ is not parallel to $B C$.
Similarly it can be shewn that no other straight line through A, except $A D$, is parallel to $B C$.

Therefore $A D$ is parallel to $B C$.
Q.E.D.

From this Proposition it follows that:
Equal triangles on the same base have equal altitudes.
[For Exercises see page 79.1

Proposition 40. Theorem.
Equal triangles, on equal bases in the same straight line, and on the same side of it, are between the same parallels.

Let the triangles $\mathrm{ABC}, \mathrm{DEF}$ which stand on equal bases $B C, E F$, in the same straight line $B F$, and on the same side of it, be equal in area.
Then shall the triangles $\mathrm{ABC}, \mathrm{DEF}$ be between the same parallels; that is, if AD be joined, AD shall be parallel to BF .

Construction. For if AD be not parallel to BF, if possible, through A draw $A G$ parallel to $B F$, I. 31. meeting ED, or ED produced, in G.
Join GF.

Proof. Now the triangles $A B C$, GEF are on equal bases BC, EF, and between the same parallels BF, AG;
\therefore the triangle $A B C=$ the triangle $G E F$.
But the triangle $A B C=$ the triangle $D E F$:
Hyp.
\therefore the triangle DEF $=$ the triangle GEF:
that is, the whole is equal to a part ; which is impossible. $\therefore A G$ is not parallel to $B F$.
Similarly it can be shewn that no other straight line through A, except $A D$, is parallel to $B F$.

Therefore AD is parallel to BF.

> Q.E.D.

From this Proposition it follows that:
(i) Eiqual triangles on equal bases have equal altitudes.
(ii) Equal triangles of equal altitudes have equal bases.

EXERCISES ON PROPOSITIONS 37-40.

Definition. Each of the three straight lines which join the angular points of a triangle to the middle points of the opposite sides is called a Median of the triangle.

$$
\text { on Prop. } 37 .
$$

1. If, in the figure of Prop. 37, $A C$ and $B D$ intersect in K, shew that
(i) the triangles $\mathrm{AKB}, \mathrm{DKC}$ are equal in area.
(ii) the quadrilaterals EBKA, FCKD are equal.
2. In the figure of 1.16 , shew that the triangles $A B C, F B C$ are equal in area.
3. On the base of a given triangle construct a second triangle, equal in area to the first, and having its vertex in a given straight line.
4. Describe an isosceles triangle equal in area to a given triangle and standing on the same base.

$$
\text { on Prop. } 38 .
$$

5. A triangle is divided by each of its medians into two parts of equal area.
6. A parallelogram is divided by its diagonals into four triangles of equal area.
7. $A B C$ is a triangle, and its base $B C$ is bisected at X; if Y be any point in the median $A X$, shew that the triangles $A B Y, A C Y$ are equal in area.
8. In $A C$, a diagonal of the parallelogram $A B C D$, any point X is taken, and $X B, X D$ are drawn : shew that the triangle $B A X$ is equal to the triangle DAX.
9. If two triangles have two sides of one respectively equal to two sides of the other, and the angles contained by those sides supplementary, the triangles are equal in area.

$$
\text { on Prop. } 39 .
$$

10. The straight line which joins the middle points of two sides of a triangle is parallel to the third side.
11. If two straight lines AB, CD intersect in O , so that the triangle AOC is equal to the triangle DOB , shew that AD and CB are parallel.

$$
\text { on Prop. } 40 .
$$

12. Deduce Prop. 40 from Prop. 39 by joining $A E, A F$ in the figure of page 78.

Proposition 41. Theorem.

If a parallelogram and a triangle be on the same base and between the same parallels, the parallelogram shall be double of the triangle.

Let the parallelogram $A B C D$, and the triangle $E B C$ be upon the same base $B C$, and between the same parallels $B C, A E$.
Then shall the parallelogram ABCD be double of the triangle EBC.
Construction. Join AC.
Proof. Now the triangles $A B C, E B C$ are on the same base $B C$, and between the same parallels $B C, A E$; \therefore the triangle $A B C=$ the triangle $E B C$.
I. 37.

And since the diagonal $A C$ bisects $A B C D$;
I. 34.
\therefore the parallelogram $A B C D$ is double of the triangle $A B C$.
Therefore the parallelogram $A B C D$ is also double of the triangle EBC.
Q.E.D.

EXERCISES.

1. $A B C D$ is a parallelogram, and X, Y are the middle points of the sides $A D, B C$; if Z is any point in $X Y$, or $X Y$ produced, shew that the triangle $A Z B$ is one quarter of the parallelogram $A B C D$.
2. Describe a right-angled isosceles triangle equal to a given square.
3. If $A B C D$ is a parallelogram, and X, Y any points in $D C$ and $A D$ respectively : shew that the triangles $A X B, B Y C$ are equal in area.
4. $A B C D$ is a parallelogram, and P is any point within it ; shew that the sum of the triangles $P A B, P C D$ is equal to half the paraltelogram.

Proposition 42. Problem.

To describe a parallelogram that shall be equal to a given triangle, and have one of its angles equal to a given angle.

Let $A B C$ be the given triangle, and D the given angle. It is required to describe a parallelogram equal to ABC , and having one of its angles equal to D.
Construction. Bisect BC at E. I. 10.
At E in CE, make the angle CEF equal to D ; I. 23. through A draw AFG parallel to EC ; I. 31. and through C draw CG parallel to EF.
Then FECG shall be the parallelogram required.
Join AE.
Proof. Now the triangles $A B E, A E C$ are on equal bases: $B E, E C$, and between the same parallels;
\therefore the triangle $\mathrm{ABE}=$ the triangle AEC ; \quad I. 38 .
\therefore the triangle $A B C$ is double of the triangle AEC.
But FECG is a parallelogram by construction; Def. 36. and it is double of the triangle AEC,
being on the same base EC, and between the same parallels:
EC and AG.
I. 41.

Therefore the parallelogram FECG is equal to the triangle
ABC ;
and it has one of its angles CEF equal to the given angle D.
Q.E.F.

EXERCISES.

1. Describe a parallelogram equal to a given square standing on the same base, and having an angle equal to half a right angle.
2. Describe a rhombus equal to a given parallelogram and standing on the same base. When does the construction fail ?
H.S.E.

Definition. If in the diagonal of a parallelogram any point is taken, and straight lines are drawn through it parallel to the sides of the parallelogram; then of the four parallelograms into which the whole figure is divided, the two through which the diagonal passes are called Paralleiograms about that diagonal, and the other two, which with these make up the whole figure, are called the complements of the parallelograms about the diagonal.

Thus in the figure given above, AEKH, KGCF are parallelograms about the diagonal $A C$; and the shaded figures HKFD, EBGK are the complements of those parallelograms.

Note. A parallelogram is often named by two letters only, these being placed at opposite anguiar points.

Proposition 43. Theorem.

The complements of the parallelograms about the diagonal of any parallelogram, are equal to one another.

Let $A B C D$ be a parallelogram, and KD, KB the complements of the parallelograms EH, GF about the diagonal AC.
Then shall the complement BK be equal to the complement KD .
Proof. Because EH is a parallelogram, and AK its diagonal, \therefore the triangle AEK $=$ the triangle AHK. I. 34 .
Similarly the triangle $\mathrm{KGC}=$ the triangle KFC .
Hence the triangles AEK, KGC are together equal to the triangles AHK, KFC.
But since the diagonal $A C$ bisects the parallelogram $A B C D$; \therefore the whole triangle $A B C=$ the whole triangle $A D C$. I. 34. Therefore the remainder, the complement $B K$, is equal to the remainder, the complement KD.
Q.E.D,

EXERCISES.

In the figure of Prop. 43, prove that
(i) The parallelogram ED is equal to the parallelogram BH .
(ii) If $K B, K D$ are joined, the triangle $A K B$ is equal to the triangle AKD.

Proposition 44. Problem.

To a given straight line to apply a parallelogram which shall be equal to a given triangle, and have one of its angles equal to a given angle.

Let $A B$ be the given straight line, C the given triangle, and D the given angle.

It is required to apply to the straight line AB a parallelogram equal to the triangle C , and having an angle equal to the angle D .

Construction. On AB produced describe a parallelogram BEFG equal to the triangle C, and having the angle EBC equal to the angle D.
I. 22 and I. 42^{*}.

Through A draw AH parallel to BG or EF, to meet FG produced in \mathbf{H}.
I. 31 .

Join HB.

Then because AH and EF are parallel, and HF meets them,
\therefore the angles AHF, HFE together $=$ two right angles. I. 29. Hence the angles BHF, HFE are together less than two right angles ;
$\therefore H B$ and $F E$ will meet if produced towards B and $E . A x .12$. Produce HB and FE to meet at K.
Through K draw KL parallel to EA or FH; I. 31. and produce $H A, G B$ to meet $K L$ in the points L and M.

Then shall BL be the parallelogram required.

Proof. Now FHLK is a parallelogram, Constr. and LB, BF are the complements of the parallelograms about the diagonal HK :
\therefore the complement $\mathrm{LB}=$ the complement BF. I. 43.
But the triangle $C=$ the figure $B F ; \quad$ Constr.
\therefore the figure $L B=$ the triangle C. \therefore the figure $\mathrm{LB}=$ the triangle C .
Again the angle $A B M=$ the vertically opposite angle GBE ; also the angle $\mathrm{D}=$ the angle GBE ; Constr.
\therefore the angle $A B M=$ the angle D.
Therefore the parallelogram LB, which is applied to the straight line AB , is equal to the triangle C , and has the angle $A B M$ equal to the angle D. Q.E.F.

[^1]
QUESTIONS FOR REVISION.

1. Quote Euclid's Twelfth Axiom. What objections have been raised to it, and what substitute for it has been suggested?
2. Which of Euclid's Propositions, dealing with parallel straight lines, depends on Axiom 12? Furnish an alternative proof.
3. Straight lines which are parallel to the same straight line are parallel to one another [Prop. 30]. Deduce this from Playfair's Axiom.
4. Define a parallelogram, an altitude of a triangle, a median of a triangle, parallelograms about the diagonal of a parallelogram.
5. What is meant by superposition? On what Axiom does this method depend? Give instances of figures which are equal in area, but which cannot be superposed.
6. In fig. 2 of Prop. 35 shew how one parallelogram may be cut into pieces, which, when fitted together in other positions, make up the other parallelogram.

Proposition 45. Problem.

To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given angle.

Let $A B C D$ be the given rectilineal figure, and E the given angle.

It is required to describe a parallelogram equal to ABCD , and having an angle equal to E .
Suppose the given rectilineal figure to be a quadrilateral.
Construction. Join BD.
Describe the parallelogram $F H$ equal to the triangle $A B D$, and having the angle $F K H$ equal to the angle \mathbf{E}. I. 42. To GH apply the parallelogram GM, equal to the triangle DBC, and having the angle GHM equal to E. I. 44.

Then shall FKML be the parallelogram required.
Proof. Because each of the angles GHM, FKH = the angle E; \therefore the angle $\operatorname{FKH}=$ the angle GHM.
To each of these equals add the angle GHK ;
then the angles FKH, GHK together = the angles GHM, GHK.
But since FK, GH are parallel, and KH meets them ;
\therefore the angles FKH, GHK together = two right angles; I. 29.
\therefore also the angles GHM, GHK together = two right angles ;
$\therefore \mathrm{KH}, \mathrm{HM}$ are in the same straight line.
I. 14.

Again, because KM, FG are parallel, and HG meets them, \therefore the angle $\mathrm{MHG}=$ the alternate angle HGF. I. 29.
To each of these equals add the angle HGL; then the angles MHG, HGL together = the angles HGF, HGL.

But because HM, GL are parallel, and HG meets them,
\therefore the angles MHG, HGL together $=$ two right angles : 1.29.
\therefore also the angles HGF, HGL together $=$ two right angles :
\therefore FG, GL are in the same straight line.
I. 14 .

And because KF and ML are each parallel to HG, Constr. therefore KF is parallel to ML; I. 30 . and KM, FL are parallel ; Constr. \therefore FKML is a parallelogram.
Again, because the parallelogram $\mathrm{FH}=$ the triangle $A B D$, and the parallelogram $\mathrm{GM}=$ the triangle DBC ; Constr. \therefore the whole parallelogram $\operatorname{FKML}=$ the whole figure $A B C D$; and it has the angle $F K M$ equal to the angle E.

By a series of similar steps, a parallelogram may be constructed equal to a rectilineal figure of more than four sides.
Q.E.F.

The following Problem is important, and furnishes a useful application of the principles of the foregoing propositions.

ADDITIONAL PROBLEM.

To describe a triangle equal in area to a given quadrilateral.

Let $A B C D$ be the given quadrilateral.
It is required to describe a triangle equal to $A B C D$ in area.
Construction.
Join BD.
Through C draw CX parallel to BD, meeting AD produced in X. Join BX.
Then $X A B$ shall be the required triangle.
Proof. Now the triangles XDB, CDB are on the same base DB and between the same paraHels DB, XC ;
\therefore the triangle $\mathrm{XDB}=$ the triangle CDB in area.
I. 37.

To each of these equals add the triangle ADB; then the triangle $X A B=$ the figure $\AA B C D$.

EXERCISE.

Construct a rectilineal figure equal to a given rectilineal figure, and having fewer sides by one than the given figure.

Hence shew how to construct a triangle equal to a given rectilineal figure.

Proposition 46. Problem.

To describe a square on a given straight line.

Let $A B$ be the given straight line. It is required to describe a square on AB .
Constr. From A draw AC at right angles to AB ; I. 11. and make $A D$ equal to $A B$.
I. 3.

Through D draw DE parallel to AB ; I. 31. and through B draw $B E$ parallel to $A D$, meeting $D E$ in E. Then shall ADEB be a square.
Proof. For, by construction, ADEB is a parallelogram : $\therefore A B=D E$, and $A D=B E$.

But $A D=A B$;
I. 34 .

Constr.
\therefore the four straight lines $A B, A D, D E, E B$ are all equal ;
that is, the figure $A D E B$ is equilateral.
Again, since $A B, D E$ are parallel, and $A D$ meets them, \therefore the angles BAD, ADE together $=$ two right angles ; I. 29. but the angle BAD is a right angle ;

Constr. \therefore also the angle ADE is a right angle.
And the opposite angles of a parallelogram are equal ; I. 34. \therefore each of the angles DEB, EBA is a right angle :
that is the figure $A D E B$ is rectangular.
Hence it is a square, and it is described on AB.
Q.E.F.

Corollary. If one angle of a parallelogram is a right angle, all its angles are right angles.

Proposition 47. Theorem.

In a right-angled triangle the square described on the hypotenuse is equal to the sum of the squares described on the other two sides.

Let $A B C$ be a right-angled triangle, having the angle BAC a right angle.

Then shall the square described on the hypotenuse BC be equal to the sum of the squares described on BA, AC.

Construction. On BC describe the square BDEC; I. 46. and on BA, AC describe the squares BAGF, ACKH.

Through A draw AL paraliel to BD or CE ; I. 31. and join AD, FC.

Proof. Then because each of the angles BAC, BAG is a right angle,
$\therefore C A$ and $A G$ are in the same straight line.
I. 14.

Now the angle CBD = the angle FBA, for each of them is a right angle.

Add to each the angle $A B C$:
then the whole angle $A B D=$ the whole angle $F B C$.

Then in the triangles ABD, FBC,
Because $\left\{\begin{aligned} A B & =F B \text {, } \\ \quad \text { and } B D & =B C,\end{aligned}\right.$ also the angle $A B D=$ the angle $F B C$; Proved. \therefore the triangle $A B D=$ the triangle $F B C$.
I. 4.

Now the parallelogram BL is double of the triangle ABD, being on the same base BD, and between the same parallels $B D, A L$.
I. 41.

And the square GB is double of the triangle FBC, being on the same base FB, and between the same parallels FB, GC.
I. 41.

But doubles of equals are equal :
$A x .6$.
therefore the parallelogram $\mathrm{BL}=$ the square GB .
Similarly, by joining AE, BK it can be shewn that the parallelogram $\mathrm{CL}=$ the square CH .
Therefore the whole square $\mathrm{BE}=$ the sum of the squares GB, HC :
that is, the square described on the hypotenuse $B C$ is equal to the sum of the squares described on the two sides $B A, A C$.
Q.E.D.

Note. It is not necessary to the proof of this Proposition that the three squares should be described external to the triangle ABC ; and since each square may be drawn either towards or away from the triangle, it may be shewn that there are $2 \times 2 \times 2$, or eight, possible constructions.

Obs. The following properties of a square, though not formally enunciated by Euclid, are employed in subsequent proofs. [See I. 48.]
(i) The squares on equal straight lines are equal.
(ii) Equal squares stand upon equal straight lines.

EXERCISES ON PROPOSITION 47.

1. In the figure of this Proposition, shew that
(i) If BG, CH are joined, these straight lines are parallel ;
(ii) The points F, A, K are in one straight line ;
(iii) $F C$ and $A D$ are at right angles to one another ;
(iv) If GH, KE, FD are joined, the triangle GAH is equal to the given triangle in all respects; and the triangles $F B D, K C E$ are each equal in area to the triangle $A B C$. [See Ex. 9, p. 79.]
2. On the sides $A B, A C$ of any triangle $A B C$, squares $A B F G$, ACKH are described both toward the triangle, or both on the side remote from it : shew that the straight lines BH and CG are equal.
3. On the sides of any triangle $A B C$, equilateral triangles $B C X$, $C A Y, A B Z$ are described, all externally, or all towards the triangle : shew that $A X, B Y, C Z$ are all equal.
4. The square described on the diagonal of a given square, is double of the given square.
5. ABC is an equilateral triangle, and AX is the perpendicular drawn from A to BC : shew that the square on AX is three times the square on BX .
6. Describe a square equal to the sum of two given squares.
7. From the vertex A of a triangle $A B C, A X$ is drawn perpendicular to the base: shew that the difference of the squares on the sides $A B$ and $A C$, is equal to the difference of the squares on $B X$ and $C X$, the segments of the base.
8. If from any point O within a triangle $A B C$, perpendiculars $O X, O Y, O Z$ are drawn to the sides $B C, C A, A B$ respectively : shew that the sum of the squares on the segments $A Z, B X, C Y$ is equal to the sum of the squares on the segments $A Y, C X, B Z$.
9. $A B C$ is a triangle right-angled at A; and the sides $A B, A C$ are intersected by a straight line $P Q$, and $B Q, P C$ are joined. Prove that the sum of the squares on BQ, PC is equal to the sum of the squares on BC, PQ.
10. In a right-angled triangle four times the sum of the squares on the two medians drawn from the acute angles is equal to five times the square on the hypotenuse.

NOTES ON PROPOSITION 47.

It is believed that Proposition 47 is due to Pythagoras, a Greek philosopher and mathematician, who lived about two centuries before Euclid.

Many experimental proofs of this theorem have been given by means of actual dissection: that is to say, it has been shewn how the squares on the sides containing the right angle may be cut up into pieces which, when fitted together in other positions, exactly make up the square on the hypotenuse. Two of these methods of dissection are given below.
I. In the adjoining diagram $A B C$ is the given right-angled triangle, and the figures $A F, H K$ are the squares on $A B, A C$, placed side by side.

FD is made equal to $E H$ or $A C$; and the two squares $A F, H K$ are cut along the lines ED, DE.
Then it will be found that the triangle EHD may be placed so as to fill up the space CAB ; and the triangle BFD may be made to fill the space CKE.

Hence the two squares AF, HK may be fitted together so as to form the single figure CBDE, which
 will be found to be a perfect square, namely the square on the hypotenuse BC.
II. In the figure of I .47 , let DB and EC be produced to meet FG and AH in L and N respectively; and let LM be drawn parallel to BC.

Then it will be found that the several parts of the two squares FA, AK can be fitted together (in the places bearing corresponding numbers) so as exactly to fill up the square DC.

Proposition 48. Theorem.

If the square described on one side of a triangle be equal to the sum of the squares described on the other two sides, then the angle contained by these two sides shall be a right angle.

Let $A B C$ be a triangle ; and let the square described on $B C$ be equal to the sum of the squares described on $B A, A C$.

Then shall the angle BAC be a right angle.
Construction. From A draw AD at right angles to AC; I. 11. and make $A D$ equal to $A B$.
I. 3 . Join DC.

Proof. Then, because $A D=A B$,
\therefore the square on $A D=$ the square on $A B$.
To each of these add the square on $C A$;
then the sum of the squares on $C A, A D=$ the sum of the squares on CA, AB.

But, because the angle DAC is a right angle, Constr.
\therefore the square on $D C=$ the sum of the squares on CA, AD. I. 47 .
And, by hypothesis, the square on $B C=$ the sum of the squares on CA, AB;
\therefore the square on $\mathrm{DC}=$ the square on BC :
\therefore also the side $\mathrm{DC}=$ the side BC .
Then in the triangles DAC, BAC,

$$
D A=B A,
$$

Constr.
Because $\left\{\begin{array}{r}D A=B A, \\ \text { and } A C \text { is common to both ; }\end{array}\right.$
also the third side $\mathrm{DC}=$ the third side BC ; Proved. \therefore the angle $D A C=$ the angle BAC.
I. 8 .

But DAC is a right angle.
Therefore also BAC is a right angle.

THEOREMS AND EXAMPLES ON BOOK I.

INTRODUCTORY.

HINTS TOWARDS THE SOLUTION OF GEOMETRICAL EXERCISES.
ANALYSIS. SYNTHESIS.
Ir is commonly found that exercises in Pure Geometry present to a beginner far more difficulty than examples in any other branch of Elementary Mathematics. This seems to be due to the following causes :
(i) The variety of such exercises is practically unlimited; and it is impossible to lay down for their treatment any definite methods, such for example as the rules of Elementary Arithmetic and Algebra.
(ii) The arrangement of Euclid's Propositions, though perhaps the most convincing of all forms of argument, affords in most cases little clue as to the way in which the proof or construction was discovered.

Euclid's propositions are arranged synthetically : that is to say, starting from the hypothesis or data, they first give a construction in accordance with postulates, and problems already solved; then by successive steps based on known theorems, they prove what was required in the enunciation.

Thus Geometrical Synthesis is a building up of known results, in order to obtain a new result.

But as this is not the way in which constructions or proofs are usually discovered, we draw the student's attention to the following hints.

Begin by assuming the result it is desired to establish ; then by working backwards, trace the consequences of the assumption, and try to ascertain its dependence on some simpler theorem which is already known to be true, or on some condition which suggests the necessary construction. If this attempt is successful, the steps of the argument may in general be re-arranged in reverse order, and the construction and proof presented in a synthetic form.

This unravelling of a proposition in order to trace it back to some earlier principle on which it depends, is called geometrical analysis : it is the natural way of attacking many theorems, and it is especially useful in solving problems.

Although the above directions do not amount to a method, they often furnish a mode of searching for a suggestion. Geometrical Analysis however can only be used with success when a thorough grasp of the chief propositions of Euclid has been gained.

T'he practical application of the foregoing hints is illustrated by the following examples.

1. Construct an isosceles triangle having given the base, and the sum of one of the equal sides and the perpendicular drawn from the vertex to the base.

Let $A B$ be the given base, and K the sum of one side and the perpendicular drawn from the vertex to the base.

Analysis. Suppose ABC to be the required triangle.
From C draw $C X$ perpendicular to $A B$:
then $A B$ is bisected at X.
I. 26.

Now if we produce $X C$ to H, making $X H$ equal to K,
it follows that $\mathrm{CH}=\mathrm{CA}$; and if AH is joined,
we notice that the angle $\mathrm{CAH}=$ the angle CHA.
I. 5.

Now the straight lines XH and AH can be drawn before the position of C is known;

Hence we have the following construction, which we arrange synthetically.

Synthesis.
Bisect $A B$ at X :
from X draw $X H$ perpendicular to $A B$, making $X H$ equal to K. Join AH.
At the point A in HA, make the angle HAC equal to the angle AHX . Join CB.
Then ACB shall be the triangle required.
First the triangle is isosceles, for $A C=B C$.

$$
\therefore \quad H C=A C \text {. }
$$

I. 6.

To each add CX;
then the sum of $A C, C X=$ the sum of $H C, C X$

$$
=H X
$$

That is, the sum of $A C, C X=K$. Q.E.F.
2. To divide a given straight line so that the square on one part may be double of the square on the other.

Let $A B$ be the given straight line.
Avalysis. Suppose $A B$ to be divided as required at X : that is, suppose the square on AX to be double of the square on XB .

Now we remember that in an isosceles right-angled triangle, the square on the hypotenuse is double of the square on either of the equal sides.

This suggests to us to draw $B C$ perpendicular to $A B$, to make $B C$ equal to $B X$, and to join XC.

> Then the square on $X C$ is double of the square on $X B$; 1.47. $\therefore \therefore X=A X$.

Hence when we join $A C$, we notice that the angle $X A C=$ the angle $X C A$.
I. 5.

Thus the exterior angle $C X B$ is double of the angle XAC.
I. 32 .

But the angle $C X B$ is half of a right angle:
I. 32.
\therefore the angle XAC is one-fourth of a right angle.
This supplies the clue to the following construction:-
Synthesis. From B draw BD perpendicular to AB;
and from A draw AC , making BAC one-fourth of a right angle.
From C, the intersection of $A C$ and $B D$, draw $C X$, making the angle
$A C X$ equal to the angle $B A C$.
I. 23.

Then $A B$ shall be divided as required at X.
For since the angle $X C A=$ the angle $X A C$,

$$
\therefore \quad X A=X C \text {. }
$$

I. 6.

And because the angle $B X C=$ the sum of the angles $B A C, A C X$, I. 32 .
\therefore the angle $B X C$ is half a right angle.
And the angle at B is a right angle;
\therefore the angle $B C X$ is half a right angle ;
I. 32.
\therefore the angle $B X C=$ the angle $B C X$;

$$
\therefore B X=B C \text {. }
$$

Hence the square on $X C$ is double of the square on $X B: 1.47$. that is, the square on $A X$ is doulble of the square on $X B$. Q.E.F.
H.S.E.

I. ON THE IDENTICAL EQUALITY OF TRIANGLES.

See Propositions 4, 8, 26.

1. If in a triangle the perpendicular from the vertex on the base bisects the base, then the triangle is isosceles.
2. If the bisector of the vertical angle of a triangle is also perpendicular to the base, the triangle is isosceles.
3. If the bisector of the vertical angle of a triangle also bisects the base, the triangle is isosceles.
[Produce the bisector, and complete the construction after the manner of I. 16.]
4. If in a triangle a pair of straight lines drawn from the extremities of the base, making equal angles with the remaining sides, are equal, the triangle is isosceles.
5. If in a triangle the perpendiculars drawn from the extremities of the base to the opposite sides are equal, the triangle is isosceles.
6. Two triangles $A B C, A B D$ on the same base $A B$, and on opposite sides of it, are such that $A C$ is equal to $A D$, and $B C$ is equal to $B D$: shew that the line joining the points C and D is perpendicular to $A B$.
7. If from the extremities of the base of an isosceles triangle perpendiculars are drawn to the opposite sides, shew that the straight line joining the vertex to the intersection of these perpendiculars bisects the vertical angle.
8. $A B C$ is a triangle in which the vertical angle $B A C$ is bisected by the straight line $A X$: from B draw $B D$ perpendicular to $A X$, and produce it to meet $A C$, or $A C$ produced, in E; then shew that $B D$ is equal to $D E$.
9. In a quadrilateral $A B C D, A B$ is equal to $A D$, and $B C$ is equal to $D C$: shew that the diagonal $A C$ lisects each of the angles which it joins.
10. In a quadrilateral $A B C D$ the opposite sides $A D, B C$ are equal, and also the diagonals $A C, B D$ are equal: if $A C$ and $B D$ intersect at K, shew that each of the triangles AKB, DKC is isosceles.
11. If one angle of a triangle be equal to the sum of the other two, the greatest side is double of the distance of its middle pomt from the opposite angle.
12. Tuo right-angled triangles which have their hypotenuses equal, and one side of one equal to one side of the other, are equal in all respects.

Let $A B C$, $D E F$ be two \triangle^{8} right-angled at B and E, having $A C$ equal to $D F$, and $A B$ equal to $D E$.

Then shall the $\triangle A B C$ be equal to the $\triangle D E F$ in all respects.
For apply the $\triangle A B C$ to the $\triangle D E F$, so that $A B$ may coincide with the equal line $D E$, and C may fall on the side of $D E$ remote from F. Let C^{\prime} be the point on which C falls.

Then DEC' represents the $\triangle A B C$ in its new position.
Now each of the $\angle^{8} D E F, D E C^{\prime}$ is a rt. \angle;
Hyp.
$\therefore E F$ and $E C^{\prime}$ are in one st. line. I. 14.
Then in the $\triangle C^{\prime} D F$, because $D F=\mathrm{DC}^{\prime}$ (i.e. AC), Hyp.

$$
\therefore \text { the } \angle D^{\prime} F C^{\prime}=\text { the } \angle D C^{\prime} F .
$$

I. 5.

Hence in the two \triangle^{8} DEF, DEC',
the $\angle D E F=$ the $\angle D E C^{\prime}$, being rt. \angle^{8};
Because $\left\{\begin{array}{c}\text { and the } \angle D F E=\text { the } \angle D C^{\prime} E \text {; } \\ \text { also the side } D E \text { is common to both; Proved. }\end{array}\right.$
\therefore the $\triangle^{s} D E F, D E C^{\prime}$ are equal in all respects; I. 26. that is, the $\triangle^{s} D E F, A B C$ are equal in all respects. Q.E.D.

Alternative Proof. Since the $\angle A B C$ is a rt. angle ;

$$
\therefore \text { the sq. on } A C=\text { the sqq. on } A B, B C \text {. }
$$

I. 47.

Similarly, the sq. on $D F=$ the sqq. on $D E, E F$;
I. 47 .

But the sq. on $A C=$ the sq. on $D F$, since $A C=D F$;
\therefore the sqq. on $A B, B C=$ the sqq. on $D E, E F$.
And of these, the sq. on $A B=$ the sq. on $D E$, since $A B=D E$;

$$
\begin{aligned}
\therefore \text { the sq. on } B C & =\text { the } \\
\therefore B C & =E F .
\end{aligned}
$$

Hence the three sides of the $\triangle A B C$ are respectively equal to the three sides of the \triangle DEF;
\therefore the $\triangle A B C=$ the $\triangle D E F$ in all respects.
I. 8 .
13. If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise the angles opposite to one pair of equal sides equal, then the angles opposite to the other pair of equal sides shall be either equal or supplementary, and in the former case the triangles shall be equal in all respects.

Fig. I.

Fig. 2.

Fig. 3.

Let $A B C, D E F$ be two triangles, in which the side $A B=$ the side $D E$, the side $A C=$ the side $D F$, and the $\angle A B C=$ the $\angle D E F$.
Then shall the L^{8} ACB, DFE be either equal (as in Figs. 1 and 2) or supplementary (as in Figs. 1 and 3); and in the former case the triangles shall be equal in all respects.

$$
\text { If the } \angle B A C=\text { the } \angle E D F \text {. }
$$

[Figs. 1 and 2.] then the $\angle A C B=$ the $\angle D F E$, and the triangles are equal in all respects.

1. 4.

But if the $\angle B A C$ be not equal to the $\angle E D F$, [Figs. 1 and 3.] let the $\angle E D F$ be greater than the $\angle B A C$.
At D in $E D$ make the $\angle E D F^{\prime}$ equal to the $\angle B A C$. Then the $\triangle^{B} B A C, E D F^{\prime}$ are equal in all respects.
I. 26.

$$
\begin{aligned}
\therefore A C & =D F^{\prime} ; \\
\text { but } A C & =D F ; \\
\therefore D F & =D F^{\prime},
\end{aligned}
$$

\therefore the angle $\mathrm{DFF}^{\prime}=$ the $\angle \mathrm{DF}^{\prime} \mathrm{F}$.
I. 5.

But the $\angle^{s} D F^{\prime} F, D F^{\prime} E$ are supplementary, I. 13.
\therefore the $\angle^{8} D F F^{\prime}, D F^{\prime} E$ are supplementary : that is, the $\angle^{3} D F E, A C B$ are supplementary.
Q.E.D.

Corollaries. Three cases of this theorem deserve special attention.

It has been proved that if the angles ACB, DFE are not supplementary they are equal:

Hence, in addition to the hypothesis of this theorem,
(i) If the angles ACB, DFE opposite to the two equal sides $A B, D E$ are both acute or both obtuse they cannot be supplementary, and are therefore equal ; or if one of them is a right angle, the other must also be a right angle (whether considered as supplementary or equal to it) :
in either case the triangles are equal in all respects.
(ii) If the two given angles are right angles or obtuse angles, it follows that the angles ACB, DFE must be both acute, and therefore equal, by (i) :
so that the triangles are equal in all respects.
(iii) If in each triangle the side opposite the given angle is not less than the other given side ; that is, if $A C$ and $D F$ are not less than $A B$ and $D E$ respectively) then the angles ACB, DFE cannot be greater than the angles $A B C$, $D E F$ respectively;
therefore the angles $A C B, D F E$ are both acute; hence, as above, they are equal ;
and the triangles $A B C, D E F$ are equal in all respects.

II. ON INEQUALITIES.

See Propositions 16, 17, 18, 19, 20, 21, 24, 25.

1. In a triangle $A B C$, if $A C$ is not greater than $A B$, shew that any straight line drawn through the vertex A, and terminated by the base $B C$, is less than $A B$.
2. ABC is a triangle, and the vertical angle BAC is bisected by a straight line which meets the base BC in X ; shew that BA is greater than BX, and CA greater than CX. Hence obtain a proof of I. 20.
3. The perpendicular is the shortest straight line that can be drawn from a given point to a given straight line : and of others, that which is nearer to the perpendicular is less than the more remote; and two, and only two equal straight lines can be drawn from the given point to the given straight line, one on each side of the perpendicular.
4. The sum of the distances of any point from the three angular points of a triangle is greater than half its perimeter.
5. The sum of the distances of any point within a triangle from its angular points is less than the perimeter of the triangle.
6. The perimeter of a quadrilateral is greater than the sum of its diagonals.
7. The sum of the diagonals of a quadrilateral is less than the sum of the four straight lines drawn from the angular points to any given point. Prove this, and point out the exceptional case.
8. In a triangle any two sides are together greater than tuice the median which bisects the remaining side.
[See Def. p. 79.]
[Produce the median, and complete the construction after the manner of t. 16.]
9. In any triangle the sum of the medians is less than the perimeter.
10. In a triangle an angle is acute, obtuse, or a right angle, according as the median drawn from it is greater than, less than. or equal to half the opposite side.
[See Ex. 4, p. 65.]
11. The diagonals of a rhombus are unequal.
12. If the vertical angle of a triangle is contained by unequal sides, and if from the rertex the median and the bisector of the angle are drawn, then the median lies within the angle contained by the bisector and the longer side.

Let $A B C$ be a \triangle, in which $A B$ is greater than $A C$; let $A X$ be the median drawn from A, and AP the bisector of the vertical $\angle B A C$.

Then shall $A X$ lie between $A P$ and $A B$.
Produce $A X$ to K, making $X K$ equal to $A X$. Join KC.

Then the $\triangle{ }^{s} B X A, C X K$ may be shewn to be equal in all respects ; I. 4. hence $B A=C K$, and the $\angle B A X=$ the $\angle C K X$.

But since $B A$ is greater than $A C$, Hyp.

$\therefore C K$ is greater than $A C$;
\therefore the $\angle C A K$ is greater than the $\angle C K A$:
I. 18. that is, the $\angle C A X$ is greater than the $\angle B A X$:
\therefore the $\angle C A X$ must be more than half the vert. $\angle B A C$; hence $A X$ lies within the angle BAP.
Q.E.D.
13. If the vertical angle of a triangle is contained by two unequal sides, and if from the vertex there are draun the bisector of the vertical angle, the median, and the perpendicular to the base, the first of these lines is intermediate in position and magnitude to the other two.

III. ON PARALLELS.

See Propositions 27-31.

1. If a straight line meets two parallel straight lines, and the two interior angles on the same side are bisected; shew that the bisectors meet at right angles. [I. 29, I. 32.]
2. The straight lines drawn from any point in the bisector of an angle parallel to the arms of the angle, and terminated by them, are equal ; and the resulting figure is a rhombus.
3. $A B$ and $C D$ are two straight lines intersecting at D, and the adjacent angles so formed are bisected: if through any point X in $D C$ a straight line $Y X Z$ be drawn parallel to $A B$ and meeting the bisectors in Y and Z, shew that $X Y$ is equal to $X Z$.
4. If two straight lines are parallel to two other straight lines, each to each; and if the acute angles contained by each pair are bisected ; shew that the bisecting lines are parallel.
5. The middle point of any straight line which meets two parallel straight lines, and is terminated by them, is equidistant from the parallels.
6. A straight line drawn between two parallels and terminated by them, is bisected; shew that any other straight line passing through the middle point and terminated by the parallels, is also bisected at that point.
7. If through a point equidistant from two parallel straight lines, two straight lines are drawn cutting the parallels, the portions of the latter thus intercepted are equal.

PROBLEMS.

8. $A B$ and $C D$ are two given straight lines, and X is a given point in $A B$: find a point Y in $A B$ such that $Y X$ may be equal to the perpendicular distance of Y from $C D$.
9. $A B C$ is an isosceles triangle: required to draw a straight line $D E$ parallel to the base $B C$, and meeting the equal sides in D and E, so that $B D, D E, E C$ may be all equal.
10. $A B C$ is any triangle : required to draw a straight line $D E$ parallel to the base $B C$, and meeting the other sides in D and E, so that $D E$ may be equal to the sum of $B D$ and $C E$.
11. $A B C$ is any triangle : required to draw a straight line parallel to the base $B C$, and meeting the other sides in D and E, so that $D E$ may be equal to the difference of $B D$ and $C E$.

IV. ON PARALLELOGRAMS.

See Propositions 33, 34, and the deductions from these Props. given on page 70 .

1. The straight line drawn through the middle point of a side of a triangle parallel to the base, bisects the remaining side.

Let $A B C$ be a \triangle, and Z the middle point of the side $A B$. Through Z, ZY is drawn par ${ }^{1}$ to $B C$.

Then shall Y be the middle point of $A C$.
Through \mathbf{Z} draw $Z X$ par 1 to AC. I. 31.
Then in the $\triangle^{B} A Z Y, Z B X$, because $Z Y$ and $B C$ are par ${ }^{1}$, \therefore the $\angle A Z Y=$ the $\angle Z B X$; I. 29.
and because $Z X$ and $A C$ are par ${ }^{1}$,
\therefore the $\angle Z A Y=$ the $\angle B Z X ; \quad$ 1. 29.

$$
\text { also } \mathrm{AZ}=\mathrm{ZB} \text { : } \quad \text { Hyp. }
$$

$$
\therefore \quad A Y=Z X .
$$

I. 26.

But ZXCY is a par ${ }^{m}$ by construction;

$$
\therefore \mathrm{ZX}=\mathrm{YC} \text {. }
$$

I. 34.

Hence $A Y=Y C$; that is, $A C$ is bisected at Y. Q.E.D.
2. The straight line which joins the middle points of two sides of a triangle, is parallel to the third side.

Let $A B C$ be a \triangle, and Z, Y the middle points of the sides $A B, A C$.

Then shall ZY be par to BC .
Produce $Z Y$ to V, making $Y V$ equal to ZY.

> Join CV.

Then in the $\triangle^{B} A Y Z, C Y V$,
Because $\left\{\begin{aligned} \mathrm{AY} & =\mathrm{CY}, \quad \text { Hyp. } \\ \text { and } \mathrm{YZ} & =\mathrm{YV}, \text { Constr. } \\ \text { and the } \angle \mathrm{AYZ} & =\text { the vert. opp }\end{aligned}\right.$
 and the $\angle A Y Z=$ the vert. opp. $\angle C Y V$;
I. 15.

$$
\therefore A Z=C V \text {, }
$$

I. 4.
and the $\angle Z A Y=$ the $\angle V C Y$;
hence $C V$ is par ${ }^{1}$ to $A Z$.
I. 27.

But $C V$ is equal to $A Z$, that is, to $B Z$: Hyp.
$\therefore C V$ is equal and par ${ }^{1}$ to $B Z$:
$\therefore Z V$ is equal and par ${ }^{1}$ to $B C$: that is, $Z Y$ is par ${ }^{1}$ to $B C$.
I. 33.
Q.E.D.
[A second proof of this proposition may be derived from I. 38, 39.]
3. The straight line which joins the middle points of two sides of a triangle is equal to half the third side.
4. Shew that the three straight lines which join the middle points of the sides of a triangle, divide it into jour triangles which are identically equal.
5. Any straight line drawn from the vertex of a triangle to the base is bisected by the straight line which joins the middle points of the other sides of the triangle.
6. Given the three middle points of the sides of a triangle, construct the triangle.
7. $A B, A C$ are two given straight lines, and P is a given point between them ; required to draw through P a straight line terminated by $A B, A C$, and bisected by P.
8. $A B C D$ is a parallelogram, and X, Y are the middle points of the opposite sides $A D, B C$: shew that $B X$ and $D Y$ trisect the diagonal AC.
9. If the middle points of adjacent sides of any quadrilateral are joined, the figure thus formed is a parallelogram.
10. Shew that the straight lines which join the middle points of opposite sides of a quadrilateral, bisect one another.
11. The straight line which joins the middle points of the oblique sides of a trapezium, is parallel to the two parallel sides, and passes through the iniddle points of the diagonals.
12. The straight line which joins the middle points of the oblique sides of a trapezium is equal to half the sum of the parallel sides; and the portion intercepted between the diagonals is equal to half the difference of the parallel sides.

DEFINITION.

If from the extremities of one straight line perpendiculars are drawn to another, the portion of the latter intercepted between the perpendiculars is said to be the Orthogonal Projection of the first line upon the second.

Thus in the adjoining figures, if from the extremities of the straight line $A B$ the perpendiculars $A X, B Y$ are drawn to $P Q$, then $X Y$ is the orthogonal projection of $A B$ on $P Q$.
13. A given straight line AB is bisected at C ; shew that the projections of $A C, C B$ on any other straight line are equal.

Let $X Z, Z Y$ be the projections of $A C, C B$ on any straight line $P Q$. Then $X Z$ and $Z Y$ shall be equal.
Through A draw a straight line parallel to $P Q$, meeting $C Z, B Y$ or these lines produced in H, K.
I. 31.

Now AX, CZ, BY are parallel, for they are perp. to PQ; I. 28.
\therefore the figures $X H, H Y$ are par ${ }^{\text {m8 }}$;

$$
\therefore A H=X Z \text {, and } H K=Z Y \text {. }
$$

I. 34 .

But through C, the middle point of $A B$, a side of the $\triangle A B K$, CH has been drawn parallel to the side BK;

$$
\begin{array}{lc}
\therefore C H \text { bisects } A K: & \text { Ex. 1, p. } 104 . \\
\text { that is, } A H=H K ; & \text { Q.E.D. } \\
\therefore X Z=Z Y . &
\end{array}
$$

14. If three parallel straight lines make equal intercepts on a fourth straight line which meets them, they will also make equal intercepts on any other straight line which meets them.
15. Equal and parallel straight lines have equal projections on any other straight line.
16. $A B$ is a given straight line bisected at O; and $A X, B Y$ are perpendiculars drawn from A and B on any other straight line : shew that $O X$ is equal to $O Y$.
17. AB is a given straight line bisected at O : and AX, BY and OZ are perpendiculars drawn to any straight line PQ , which does not pass between A and B : shew that OZ is equal to half the sum of AX, BY.
[$O Z$ is said to be the Arithmetic Mean between $A X$ and $B Y$.]
18. $A B$ is a given straight line bisected at O; and through A, B and O parallel straight lines are drawn to meet a given straight line $P Q$ in X, Y, Z : shew that $O Z$ is equal to half the sum, or half the difference of $A X$ and $B Y$, according as A and B lie on the same side or on opposite sides of PQ .
19. To divide a given finite straight line into any number of equal parts.
[For example: required to divide the straight line $A B$ into five equal parts.

From A draw $A C$, a straight line of unlimited length, making any angle with AB.

In AC take any point P; and by marking off successive parts $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}, \mathrm{ST}$ each equal to AP, make AT to contain AP five times.

Join BT; and through P, Q, R, S draw parallels to $B T$.

It may be shewn by Ex. 14, p. 106, that these parallels divide $A B$ into five equal parts.]
20. If through an angle of a parallelogram any straight line is drawn, the perpendicuiar drawn to it from the opposite angle is equal to the sum or difjerence of the perpendiculars drawn to it from the two remaining angles, according as the given straight line falls without the parallelogram, or intersects it.
[Through the opposite angle draw a straight line parallel to the given straight line, so as to meet the perpendicular from one of the remaining angles, produced if necessary ; then apply 1. 34, I. 26 . Or proceed as in the following example.]
21. From the angular points of a parallelogram perpendiculars are drawn to any straight line which is without the parallelogram : shew that the sum of the perpendiculars drawn from one pair of opposite angles is equal to the sum of those drawn from the other pair.
[Draw the diagonals, and from their point of intersection let fall a perpendicular upon the given straight line. See Ex. 17, p. 106.]
22. The sum of the perpendiculars drawn from any point in the base of an isosceles triangle to the equal sides is equal to the perpendicular drawn from either extremity of the base to the opposite side.
[It follows that the sum of the distances of any point in the base of an isosceles triangle from the equal sides is constant, that is, the same whatever point in the base is taken.]
23. In the base produced of an isosceles triangle any point is taken : shew that the difference of its perpendicular distances from the equal sides is constant.
24. The sum of the perpendiculars drawn from any point within an equilateral triangle to the three sides is equal to the perpendicular drawn from any one of the angular points to the opposite side, and is therefore constant.

PROBLEMS.

25. Draw a straight line through a given point, so that the part of it intercepted between two given parallel straight lines may be of given length. When does this problem admit of two solutions, when of only one, and when is it impossible?
26. Draw a straight line parallel to a given straight line, so that the part intercepted between two other given straight lines may be of given length.
27. Draw a straight line equally inclined to two given straight lines that meet, so that the part intercepted between them may be of given length.
28. $A B, A C$ are two given straight lines, and P is a given point without the angle contained by them. It is required to draw through P a straight line to meet the given lines, so that the part intercepted between them may be equal to the part between P and the nearer line.

V. MISCELLANEOUS THEOREMS AND EXAMPLES.

Chiefly on I. 32.

1. A is the vertex of an isosceles triangle ABC , and BA is produced to D , so that AD is equal to BA ; if DC is drawn, shew that BCD is a right angle.
2. The straight line joining the middle point of the hypotenuse of a right-angled triangle to the right angle is equal to half the hypotenuse.
3. From the extremities of the base of a triangle perpendiculars are drawn to the opposite sides (produced if necessary) ; shew that the straight lines which join the middle point of the base to the feet of the perpendiculars are equal.
4. In a triangle $\mathrm{ABC}, \mathrm{AD}$ is drawn perpendicular to BC ; and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the middle points of the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively: shew that each of the angles $\mathrm{ZXY}, \mathrm{ZDY}$ is equal to the angle BAC.
5. In a right-angled triangle, if a perpendicular is drawn from the right angle to the hypotenuse, the two triangles thus formed are equiangular to one another.
6. In a right-angled triangle two straight lines are drawn from the right angle, one bisecting the hypotenuse, the other perpendicular to it: shew that they contain an angle equal to the difference of the two acute angles of the triangle. [See above, Ex. 2 and Ex. 5.]
7. In a triangle if a perpendicular is drawn from one extremity of the base to the bisector of the vertical angle, (i) it will make with either of the sides containing the vertical angle an angle equal to half the sum of the angles at the base: (ii) it will make with the base an angle equal to half the difference of the angles at the base.

Let $A B C$ be the given \triangle, and $A H$ the bisector of the vertical $\angle B A C$.

Let CLK meet AH at right angles.
(i) Then shall each of the \angle^{3} AKC, ACK be equal to half the sum of the $\angle^{B} A B C$, ACB.

$$
\begin{aligned}
& \begin{array}{c}
\text { In the } \triangle{ }^{*} A K L, A C L, \\
\text { the } \angle K A L=\text { the } \angle \mathrm{CAL}, \\
\text { BH } \\
\text { Hyp. }
\end{array} \\
& \text { Because }\left\{\text { also the } \angle A L K=\text { the } \angle A L C \text {, being rt. } \angle^{\circ}\right. \text {; } \\
& \text { and } A L \text { is common to both } \triangle^{s} \text {; } \\
& \therefore \text { the } \angle A K L=\text { the } \angle A C L \text {. } \\
& \text { 1. } 26 . \\
& \text { Again, the } \angle A K C=\text { the sum of the } \angle{ }^{8} K B C, K C B ; \quad \text { 1. } 32 . \\
& \therefore \text { the } \angle A C K=\text { the sum of the } \angle^{8} \mathrm{KBC}, \mathrm{KCB} \text {. } \\
& \text { To each add the } \angle A C K \text { : }
\end{aligned}
$$

 then twice the $\angle A C K=$ the sum of the $\angle^{8} A B C, A C B$; \therefore the $\angle A C K=$ half the sum of the $\angle{ }^{8} A B C, A C B$.
(ii) The $\angle \mathrm{KCB}$ shall be equal to half the difference of the $\angle{ }^{s} A C B, A B C$.

As before, the $\angle A C K=$ the sum of the $\angle{ }^{8} \mathrm{KBC}, \mathrm{KCB}$.
To each of these add the $\angle K C B$:
then the $\angle A C B=$ the $\angle K B C$ together with twice the $\angle K C B$.
\therefore twice the $\angle K C B=$ the difference of the $\angle^{8} A C B, K B C$; that is, the $\angle K C B=$ half the difference of the $\angle^{8} A C B, A B C$.

Corollary. If X is the middle point of the base, and XL is joined, it may be shewn by Ex. 3, p. 105, that XL is half BK; that is, that XL is half the difference of the sides AB, AC.
8. In any triangle the angle contained by the bisector of the vertical angle and the perpendicular from the vertex to the base is equal to half the difference of the angles at the base.
[See Ex. 3, p. 65.]
9. In a triangle $A B C$ the side $A C$ is produced to D, and the angles $B A C, B C D$ are bisected by straight lines which meet at F; shew that they contain an angle equal to half the angle at B.
10. If in a right-angled triangle one of the acute angles is double of the other, shew that the hypotenuse is double of the shorter side.
11. If in a diagonal of a parallelogram any two points equidistant from its extremities are joined to the opposite angles, the figure thus formed will be also a parallelogram.
12. $A B C$ is a given equilateral triangle, and in the sides $B C, C A$, $A B$ the points X, Y, Z are taken respectively, so that $B X, C Y$ and $A Z$ are all equal. $A X, B Y, C Z$ are now drawn, intersecting in P, Q, R : shew that the triangle $P Q R$ is equilateral.
13. If in the sides $A B, B C, C D, D A$ of a parallelogram $A B C D$ four points P, Q, R, S are taken in order, one in each side, so that $A P, B Q, C R, D S$ are all equal ; shew that the figure $P Q R S$ is a parallelogram.
14. In the figure of I. 1 , if the circles intersect at F, and if $C A$ and $C B$ are produced to meet the circles in P and Q respectively ; shew that the points P, F, Q are in the same straight line; and shew aiso that the triangle CPQ is equilateral.
[Problems marked (*) admit in general of more than one solution.]
15. Through two given points draw two straight lines forming with a straight line given in position, an equilateral triangle.
*16. From a given point it is required to draw to two parallel straight lines two equal straight lines at right angles to one another.
*17. Three given straight lines meet at a point ; draw another straight line so that the two portions of it intercepted between the given lines may be equal to one another.
18. From a given point draw three straight lines of given lengths, so that their extremities may be in the same straight line, and intercept equal distances on that line.
[See Fig. to I. 16.]
19. Use the properties of the equilateral triangle to trisect a given finite straight line.
20. In a given triangle inscribe a rhombus, having one of its angles coinciding with an angle of the triangle.
VI. ON THE CONCURRENCE OF STRAIGHT LINES IN A TRIANGLE.

Definitions. (i) Three or more straight lines are said to be concurrent when they meet in one point.
(ii) Three or more points are said to be collinear when they lie upon one straight line.

Obs. We here give some propositions relating to the concurrence of certain groups of straight lines drawn in a triangle: the importance of these theorems will be more fully appreciated wher the student is familiar with Books III, and rv.

1. The perpendiculars drawn to the sides of a triangle from their middle points are concurrent.

Let $A B C$ be a \triangle, and X, Y, Z the middle points of its sides.

Then shall the perps drawn to the sides from $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be concurrent.

From Z and Y draw perp ${ }^{8}$ to $A B, A C$; these perp ${ }^{3}$, since they cannot be parallel, will meet at some point $O . \quad A x .12$. Join OX.

It is required to prove that OX is perp. to BC .
Join OA, OB, OC.
In the \triangle OYA, OYC,
Because $\left\{\begin{array}{cc}\text { and } O Y \text { is common to both; } & \text { Hyp. } \\ \text { also the } \angle O Y A=\text { the } \angle O Y C \text {, being rt. } \angle^{8} ; & \\ \therefore O A=O C . & \text { I. } 4 .\end{array}\right.$
Because $\left\{\begin{array}{cc}\text { and } O Y \text { is common to both; } & \text { Hyp. } \\ \text { also the } \angle O Y A=\text { the } \angle O Y C \text {, being rt. } \angle^{8} ; & \\ \therefore O A=O C . & \text { I. } 4 .\end{array}\right.$
Similarly, from the $\triangle^{8} O Z A, O Z B$,
it may be proved that $O A=O B$.
Hence OA, OB, OC are all equal.
Again, in the $\triangle^{s} O X B, O X C$,
Because $\left\{\begin{array}{r}B X=C X, \\ \text { and } X O \text { is common to both ; } \\ \text { also } O B=O C \text { : }\end{array}\right.$
Proved.
\therefore the $\angle \mathrm{OXB}=$ the $\angle \mathrm{OXC}$;
I. 8.
but these are adjacent \angle^{8};
\therefore they are rt. \angle^{8};
Def. 10.
that is, $O X$ is perp. to BC.
Hence the three perps $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$ meet at the point O.
Q.E.D.
2. The bisectors of the angles of a triangle are concurrent.

Let $A B C$ be a \triangle. Bisect the $\angle{ }^{s} A E C$, $B C A$, by straight lines which must meet at some point O.
$A x .12$. Join AO.
It is required to prove that AO bisects the $\angle B A C$.
From O draw OP, OQ, OR perp. to the sides of the \triangle.

Then in the \triangle^{8} OBP, OBR,

$$
\text { Because }\left\{\begin{array}{c}
\text { and the } \angle O P B=\text { the } \angle O R B, \text { being rt. } \angle \mathrm{L}, \\
\text { and } O B \text { is common; } \\
\therefore O P=O R .
\end{array}\right.
$$

Constr.
I. 26.

Similarly from the \triangle : OCP, OCQ, it may be shewn that $O P=O Q$,
$\therefore O P, O Q, O R$ are all equal.
Again in the \triangle ORA, OQA,
Because $\left\{\begin{array}{l}\text { the } \angle^{\prime} O R A, O Q A \text { are } \mathrm{rt.} \mathrm{~L}^{3}, \\ \text { and the hypotenuse } O A \text { is } \\ \text { common, } \\ \text { also } O R=O Q ; \text { Proved. }\end{array}\right.$
\therefore the $\angle R A O=$ the $\angle Q A O$.

Ex. 12, p. 99.

That is, $A O$ is the bisector of the $\angle B A C$.
Hence the bisectors of the three \angle^{8} meet at the point O.
Q.E.D.
3. The bisectors of two exterior angles of a triangle and the bisector of the third angle are concurrent.

Let $A B C$ be a \triangle, of which the sides $A B$, $A C$ are produced to any points D and E.

Then shall the bisectors of the L^{\prime} DBC, ECB, BAC be concurrent.

Bisect the \square° DBC, ECB by straight lines which must meet at some point O . $A x .12$. Join AO.
It is required to prove that AO bisects the angle BAC.
From O draw OP, OQ, OR perp. to the sides of the \triangle.

Then in the $\triangle{ }^{\circ} O B P, O B R$,

Because $\left\{\begin{array}{c}\text { the } \angle O B P=\text { the } \angle O B R, \\ \text { also the } \angle O P B=\text { the } \angle O R B, \text { being } \mathrm{rt} . ~\end{array} \angle^{s}\right.$,

$$
\therefore O P=O R \text {. }
$$

I. 26.

Similarly from the $\triangle{ }^{*}$ OCP, OCQ, it may be shewn that $O P=O Q$:

$$
\therefore O P, O Q, O R \text { are all equal. }
$$

$$
\text { Again in the } \triangle^{s} O R A, O Q A
$$

Because $\left\{\begin{array}{c}\text { the } \angle B \text { ORA, OQA are } r \text { r. } \angle^{s}, \\ \text { and the hypotenuse } O A \text { is common, }\end{array}\right.$

$$
\begin{aligned}
\text { also } \mathrm{OR} & =\mathrm{OQ} ; \\
\therefore \quad \text { the } \angle \mathrm{RAO} & =\text { the } \angle \mathrm{QAO} .
\end{aligned}
$$

That is. $A O$ is the bisector of the $\angle B A C$.
\therefore the ibisectors of the two exterior - $\mathrm{DBC}, \mathrm{ECB}$, and of the interior - BAC meet at the point O.
4. The medians of a triangle are concurrent.

Let $A B C$ be a \triangle.
Then shall its three medians be concurrent. Let $B Y$ and $C Z$ be two of its medians, and let them intersect at O .

Join AO,
and produce it to meet BC in X .
It is required to shew that AX is the remaining median of the \triangle.
Through C draw CK parallel to BY: produce $A X$ to meet CK at K. Join BK.

In the $\triangle A K C$,
because Y is the middle point of $A C$, and $Y O$ is parallel to CK, $\therefore \mathrm{O}$ is the middle point of AK. Ex. 1, p. 104. Again in the $\triangle A B K$,
since Z and O are the middle points of $A B, A K$,
\therefore ZO is parallel to BK, \quad Ex. 2, p. 104. that is, OC is parallel to BK: \therefore the figure BKCO is a parm.
But the diagonals of a par ${ }^{\text {in }}$ bisect one another, Ex. 5, p. 70. $\therefore X$ is the middle point of $B C$. That is, AX is a median of the \triangle.
Hence the three medians meet at the point O. Q.E.D.

Corollary. The three medians of a triangle cut one another at a point of trisection, the greater segment in each being towards the angular point.

For in the above figure it has been proved that

$$
A O=O K \text {, }
$$ also that OX is half of OK; $\therefore \mathrm{OX}$ is half of OA :

that is, $O X$ is one third of $A X$. Similarly OY is one third of BY, and $O Z$ is one third of $C Z$. Q.E.D.

By means of this Corollary it may be shewn that in any triangle the shorter median bisects the greater side.
[The point of intersection of the three medians of a triangle is called the centroid. It is shewn in Mechanies that a thin triangular plate will balance in any position about this point: therefore the centroid of a triangle is also its centre of gravity.]
II.S.E.
5. The perpendiculars drawn from the vertices of a sriangle to the opposite sides are concurrent.

Let $A B C$ be a \triangle, and $A D, B E, C F$ the three perp ${ }^{8}$ drawn from the vertices to the opposite sides.

Then shall the perps AD, BE, CF be concurrent.
Through A, B, and C draw straight lines MN, NL, LM parallel to the opposite sides of the \triangle.

$$
\begin{array}{ll}
\text { Then the figure } B A M C \text { is a par }{ }^{m} \text {. } & \text { Def. } 36 . \\
& \therefore B B=M C . \\
\text { Also the figure } B A C L \text { is a par }{ }^{m} \text {. } & \text { I. } 34 . \\
\therefore A B=L C, \\
\therefore \angle C=C M \text { : }
\end{array}
$$

that is, C is the middle point of LM.
So also A and B are the middle points of $M N$ and $N L$.
Hence AD, BE, CF are the perp ${ }^{8}$ to the sides of the $\triangle L M N$ from their middle points. Ex. 3, p. 60.
But these perps meet in a point: Ex. 1, p. 111. that is, the perps drawn from the vertices of the $\triangle A B C$ to the opposite sides meet in a point. Q.E.D.
[For another proof see Theorems and Examples on Book iir.]

DEFINITIONS.

(i) The intersection of the perpendiculars drawn from the vertices of a triangle to the opposite sides is called its orthocentre.
(ii) The triangle formed by joining the feet of the perpendiculars is called the pedal triangle.

VII. ON THE CONSTRUCTION OF TRIANGLES WITH GIVEN PARTS.

Obs. No general rules can be laid down for the solution of problems in this section; but in a few typical cases we give constructions, which the student will find little difficulty in adapting to other questions of the same class.

1. Construct a right-angled triangle, having given the hypotenuse and the sum of the remaining sides.
[It is required to construct a rt.angled \triangle, having its hypotenuse equal to the given straight line K, and the sum of its remaining sides equal to $A B$.

From A draw $A E$ making with $B A$ an \angle equal to half a rt. L. From centre B, with radius equal to K, describe a circle cutting $A E$ in the points $\mathrm{C}, \mathrm{C}^{\prime}$.

From C and C^{\prime} draw perps $C D, C^{\prime} D^{\prime}$ to $A B$; and join $C B, C^{\prime} B$. Then either of the $\triangle^{s} C D B, C^{\prime} D^{\prime} E$ will satisfy the given conditions.

Note. If the given hypotenuse K be greater than the perpendicular drawn from B to $A E$, there will be two solutions. If the line K be equal to this perpendicular, there will be one solution ; but if less, the problem is impossible.]
2. Construct a right-angled triangle, having given the hypotenuse and the difference of the remaining sides.
3. Construct an isosceles right-angled triangle, having given the sum of the hypotenuse and one side.
4. Construct a triangle, having given the perimeter and the angles at the base.

[Let $A B$ be the perimeter of the required \triangle, and X and Y the \angle^{s} at the base.

From A draw AP, making the $\angle B A P$ equal to half the $\angle X$.
From B draw $B P$, making the $\angle A B P$ equal to half the $\angle Y$.
From P draw $P Q$, making the $\angle A P Q$ equal to the $\angle B A P$.
From P draw $P R$, making the $\angle B P R$ equal to the $\angle A B P$.
Then shall $P Q R$ be the required \triangle.]
5. Construct a right-angled triangle, having given the perimeter. and one acute angle.
6. Construct an isosceles triangle of given altitude, so that its base may be in a given straight line, and its two equal sides may pass through two fixed points.
[See Ex. 7, p. 55.]
7. Construct an equilateral triangle, having given the length of the perpendicular drawn from one of the vertices to the opposite side.
8. Construct an isosceles triangle, having given the base, and the difference of one of the remaining sides and the perpendicular drawn from the vertex to the base.
[See Ex. 1, p. 96.]
9. Construct a triangle, having given the base, one of the angles at the base, and the sum of the remaining sides.
10. Construct a triangle, having given the base, one of the angles at the base, and the difference of the remaining sides. [Two cases arise, according as the given angle is adjacent to the greater side or the less.]
11. Construct a triangle, having given the base, the difference of the angles at the base, and the difference of the remaining sides.

[Let $A B$ be the given base, X the difference of the \angle^{8} at the base, and K the difference of the remaining sides.

Draw $B E$, making the $\angle A B E$ equal to half the $\angle X$.
From centre A, with radius equal to K, describe a circle cutting $B E$ in D and D^{\prime}. Let D be the point of intersection nearer to B. Join AD and produce it to C.
Draw $B C$, making the $\angle D B C$ equal to the $\angle B D C$.
Then shall $C A B$ be the \triangle required. Ex. 7 , p. 109.
Note. This problem is possible only when the given difference K is greater than the perpendicular drawn from A to $B E$.]
12. Construct a triangle, having given the base, the difference of the angles at the base, and the sum of the remaining sides.
13. Construct a triangle, having given the perpendicular from the vertex on the base, and the difference between each side and the adjacent segment of the base.
14. Construct a triangle, having given two sides and the median which bisects the remaining side.
[See Ex. 18, p. 110.]
15. Construct a triangle, having given one side, and the medians which bisect the two remaining sides.
[See Fig. to Ex. 4, p. 113.
Let $B C$ be the given side. Take two-thirds of each of the given medians; hence construct the triangle BOC. The rest of the construction follows easily.]
16. Construct a triangle, having given its three medians.
[See Fig. to Ex. 4, p. 113.
Take two-thirds of each of the given medians, and construct the triangle OKC. The rest of the construction follows easily.]

VIII. ON AREAS.

See Propositions 35-48.

Obs. It must be understood that throughout this section the word equal as applied to rectilineal figures will be used as denoting equality of area unless otherwise stated.

1. Shew that a parallelogram is bisected by any straight line which passes through the middle point of one of its diagonals.
[I. 29, 26.]
2. Bisect a parallelogram by a straight line drawn through a given point.
3. Bisect a parallelogram by a straight line drawn perpendicular to one of its sides.
4. Bisect a parallelogram by a straight line drawn parallel to a given straight line.
5. ABCD is a trapezium in which the side AB is parallel to DC . Shew that its area is equal to the area of a parallelogram formed by drawing through X , the middle point of BC, a straight line parallel to AD, meeting DC, or DC produced. [I. 29, 26.]
6. A trapezium is equal to a parallelogram whose base is half the sum of the parallel sides of the given figure, and whose altitude is equal to the perpendicular distance between them.
7. $A B C D$ is a trapezium in which the side $A B$ is parallel to $D C$; shew that it is double of the triangle formed by joining the extremities of $A D$ to X, the middle point of $B C$.
8. Shew that a trapezium is bisected by the straight line which joins the middle points of its parallel sides.
[I. 38.]

Obs. In the following group of Exercises the proofs depend chiefly on Propositions 37 and 38, and the two converse theorems.
9. If two straight lines $A B, C D$ intersect at X, and if the straight lines $A C$ and $B D$, which join their extremities are parallel, shew that the triangle $A X D$ is equal to the triangle $B X C$.
10. If two straight lines $A B, C D$ intersect at X, so that the triangle $A X D$ is equal to the triangle $X C B$, then $A C$ and $B D$ are parallel.
11. $A B C D$ is a parallelogram, and X any point in the diagonal $A C$ produced; shew that the triangles XBC, XDC are equal. [See Ex. 13, p. 70.]
12. $A B C$ is a triangle, and R, Q the middle points of the sides $A B, A C$; shew that if $B Q$ and $C R$ intersect in X, the triangle $B X C$ is equal to the quadrilateral AQXR. [See Ex. 5, p. 79.]
13. If the middle points of the sides of a quadrilateral be joined in order, the parallelogram so formed [see Ex. 9, p. 105] is equal to half the given figure.
14. Two triangles of equal area stand on the same base but on opposite sides of it: shew that the straight line joining their vertices is bisected by the base, or by the base produced.
15. The straight line which joins the middle points of the diagonals of a trapezium is parallel to each of the two parallel sides.
16. (i) A triangle is equal to the sum or difference of two triangles on the same base (or on equal bases), if the altitude of the first is equal to the sum or difference of the altitudes of the others.
(ii) A triangle is equal to the sum or difference of two triangles of the same altitude, if the base of the first is equal to the sum or difference of the bases of the others.

Similar statements hold good of parallelograms.
17. $A B C D$ is a parallelogram, and O is any point outside it; shew that the sum or difference of the triangles $O A B, O C D$ is equal to half the parallelogram. Distinguish between the two cases.

Obs. On the following proposition depends an important theorem in Mechanics: we give a proof of the first case, leaving the second case to be deduced by a similar method.
18. (i) ABCD is a parallelogram, and O is any point without the angle $B A D$ and its opposite vertical angle; shew that the triangle OAC is equal to the sum of the triangles $\mathrm{OAD}, \mathrm{OAB}$.
(ii) If O is within the angle BAD or its opposite vertical angle, the triangle OAC is equal to the difference of the triangles $\mathrm{OAD}, \mathrm{OAB}$.

Case I. If O is without the $\angle D A B$ and its opp. vert. \angle, then $O A$ is without the par ${ }^{\text {¹ }}$ ABCD : therefore the perp. drawn from C to $O A$ is equal to the sum of the perp ${ }^{8}$ drawn from B and D to OA. [See Ex. 20, p. 107.]

Now the $\triangle A C, O A D, O A B$ are upon the same base $O A$;
and the altitude of the $\triangle O A C$ with
respect to this base has been shewn to

be equal to the sum of the altitudes of
the $\triangle^{8} O A D, O A B$.
Therefore the $\triangle O A C$ is equal to the sum of the $\triangle^{s} O A D, O A B$. [See Ex. 16, p. 118.] Q.E.D.
19. $A B C D$ is a parallelogram, and through O, any point within it, straight lines are drawn parallel to the sides of the parallelogram; shew that the difference of the parallelograms DO, BO is double of the triangle AOC. [See preceding theorem (ii).]
20. The area of a quadrilateral is equal to the area of a triangle having two of its sides equal to the diagonals of the given figure, and the included angle equal to either of the angles between the diagonals.
21. ABC is a triangle, and D is any point in AB ; it is required to draw through D a straight line DE to meet BC produced in E , so that the triangle DBE may be equal to the triangle ABC.

[Join DC. Through A draw AE parallel to DC.
I. 31. Join DE.
The $\triangle E B D$ shall be equal to the $\triangle A B C$.]
I. 37.
22. On a base of given length describe a triangle equal to a given triangle and having an angle equal to an angle of the given triangle.
23. Construct a triangle equal in area to a given triangle, and having a given altitude.
24. On a base of given length construct a triangle equal to a given triangle, and having its vertex on a given straight line.
25. On a base of given length describe (i) an isosceles triangle; (ii) a right-angled triangle, equal to a given triangle.
26. Construct a triangle equal to the sum or difference of two given triangles. [See Ex. 16, p. 118.]
27. $A B C$ is a given triangle, and X a given point: describe a triangle equal to $A B C$, having its vertex at X, and its base in the same straight line as $B C$.
28. ABCD is a quadrilateral. On the base AB construct a triangle equal in area to ABCD , and having the angle at A common with the quadrilateral.
[Join BD. Through C draw CX parallel to BD, meeting AD produced in X ; join BX.]
29. Construct a rectilineal figure equal to a given rectilineal figure, and having fewer sides by one than the given figure.

Hence shew how to construct a triangle equal to a given rectilineal figure.
30. $A B C D$ is a quadrilateral : it is required to construct a triangle equal in area to $A B C D$, having its vertex at a given point X in $D C$, and its base in the same straight line as $A B$.
31. Construct a rhombus equal to a given parallelogram.
32. Construct a parallelogram which shall have the same area and perimeter as a given triangle.
33. Bisect a triangle by a straight line drawn through one of its angular points.
34. Trisect a triangle by straight lines drawn through one of its angular points.
[See Ex. 19, p. 110, and I. 38.]
35. Divide a triangle into any number of equal parts by straight lines drawn through one of its angular points.
[See Ex. 19, p. 107, and I. 38.]
36. Bisect a triangle by a straight line drawn through a given point in one of its sides.
[Let $A B C$ be the given \triangle, and P the given point in the side $A B$.

Bisect $A B$ at Z; and join $C Z, C P$.
Through Z draw ZQ parallel to CP. Join PQ.
Then shall PQ bisect the \triangle.
See Ex. 21, p. 119.]

37. Trisect a triangle by straight lines drawn from a given point in one of its sides.
[Let $A B C$ be the given \triangle, and X the given point in the side $B C$.
Trisect BC at the points P, Q. Ex. 19, p. 107. Join $A X$, and through P and Q draw $P H$ and QK parallel to AX. Join XH, XK.
These straight lines shall trisect the \triangle; as may be shewn by joining AP, AQ.

See Ex. 21, p. 119.]

38. Cut off from a given triangle a fourth, fifth, sixth, or any part required by a straight line drawn from a given point in one of its sides.
[See Ex. 19, p. 107, and Ex. 21, p. 119.]
39. Bisect a quadrilateral by a straight line drawn through an angular point.
[Two constructions may be given for this problem : the first will be suggested by Exercises 28 and 33, p. 120.

The second method proceeds thus.
Let $A B C D$ be the given quadrilateral, and A the given angular point. Join AC, BD, and bisect BD in X. Through X draw PXQ parallel to $A C$, meeting $B C$ in P; join $A P$.
Then shall AP bisect the quadrilateral.
Join AX, CX, and use 1. 37, 38.]

40. Cut off from a given quadrilateral a third, a fourth, a fifth, or any part required, by a straight line drawn through a given angular point.
[See Exercises 28 and 35, p. 120.]

Obs. The following Theorems depend on I. 47.
41. In the figure of 1.47 , shew that
(i) the sum of the squares on $A B$ and $A E$ is equal to the sum of the squares on $A C$ and $A D$.
(ii) the square on $E K$ is equal to the square on $A B$ with four times the square on AC.
(iii) the sum of the squares on EK and FD is equal to five times the square on BC.
42. If a straight line is divided into any two parts, the square on the straight line is greater than the sum of the squares on the two parts.
43. If the square on one side of a triangle is less than the squares on the remaining sides, the angle contained by these sides is acute; if greater, obtuse.
44. $A B C$ is a triangle, right-angled at A; the sides $A B, A C$ are intersected by a straight line PQ, and BQ, PC are joined : shew that the sum of the squares on $B Q, P C$ is equal to the sum of the squares on BC, PQ.
45. In a right-angled triangle four times the sum of the squares on the medians which bisect the sides containing the right angle is equal to five times the square on the hypotenuse.
46. Describe a square whose area shall be three times that of a given square.
47. Divide a straight line into two parts such that the sum of their squares shall be equal to a given square.

IX. ON LOCI.

In many geometrical problems we are required to find the position of a point which satisfies given conditions; and all such problems hitherto considered have been found to admit of a limited number of solutions. This, however, will not be the case if only one condition is given. For example :
(i) Required a point which shall be at a given distance from a given point.

This problem is evidently indeterminate, that is to say, it admits of an indefinite number of solutions; for the condition stated is satisfied by any point on the circumference of the circle described from the given point as centre, with a radius equal to the given distance. Moreover this condition is satisfied by no other point within or without the circle.
(ii) Required a point which shall be at a given distance from a given straight line.

Here again there are an infinite number of such points, and they lie on two parallel straight lines drawn on either side of the given straight line at the given distance from it : further, no point that is not on one or other of these parallels satisfies the given condition.

Hence we see that one condition is not sufficient to determine the position of a point absolutely, but it may have the effect of restricting it to some definite line or lines, straight or curved. This leads us to the following definition.

Definition. The locus of a point satisfying an assigned condition consists of the line, lines, or part of a line, to which the point is thereby restricted; provided that the condition is satisfied by every point on such line or lines, and by no other.

A locus is sometimes defined as the path traced out by a point which moves in accordance with an assigned law.

Thus the locus of a point, which is always at a given distance from a given point, is a circle of which the given point is the centre : and the locus of a point, which is always at a given distance from a given straight line, is a pair of parallel straight lines.

We now see that in order to infer that a certain line, or system of lines, is the locus of a point under a given condition, it is necessary to prove
(i) that any point which fulfils the given condition is on the supposed locus;
(ii) that every point on the supposed locus satisfies the given condition.

1. Find the locus of a point which is always equidistant from two given points.

Let A, B be the two given points.
(a) Let P be any point equidistant from A and B, so that $A P=B P$.

Bisect $A B$ at X, and join $P X$.
Then in the $\triangle^{8} A X P, B X P$,
Because $\left\{\begin{array}{c}A X=B X, \\ \text { and } P X \text { is common to both, } \\ \text { also } A P=B P,\end{array}\right.$
Constr.
\therefore the $\angle \mathrm{PXA}=$ the $\angle \mathrm{PXB}$; Hyp.
I. 8.
and they are adjacent \angle^{8};
$\therefore \mathrm{PX}$ is perp. to AB . Def. 10 .

\therefore any point which is equidistant from A and B is on the straight line which bisects $A B$ at right angles.
(β) Also every point in this line is equidistant from A and B. For let \mathbf{Q} be any point in this line.

Join AQ, BQ.
Because $\left\{\begin{array}{c}A X=B X, \\ \text { and } X Q \text { is common to both; } \\ \text { also the } \angle A X Q=\text { the } \angle B X Q \text {, being rt. } \angle^{\circ} \text {; }\end{array}\right.$
$\therefore A Q=B Q$.
I. 4.

That is, Q is equidistant from A and B.
Hence we conclude that the locus of the point equidistant from two given points A, B is the straight line which bisects $A B$ at right angles.
2. To find the locus of the middle point of a straight line drawn from a given point to meet a given straight line of unlimited length.

Let A be the given point, and $B C$ the given straight line of un. limited length.
(a) Let $A X$ be any straight line drawn through A to meet $B C$, and let P be its middle point.

Draw AF perp. to BC, and bisect AF at E. Join EP, and produce it indefinitely.
Since $A F X$ is a \triangle, and E, P the middle points of the two sides $A F, A X$,
$\therefore E P$ is parallel to the remaining side FX. Ex. 2, p. 104.
$\therefore \mathrm{P}$ is on the straight line which passes through the fixed point E , and is parallel to BC.
(β) Again, every point in EP, or EP produced, fulfils the required condition.

For, in this straight line take any point Q.

$$
\text { Join AQ, and produce it to meet } \mathrm{BC} \text { in } \mathrm{Y} \text {. }
$$

Then $F A Y$ is a \triangle, and through E, the middle point of the side $A F$, EQ is drawn parallel to the side FY;
$\therefore \mathrm{Q}$ is the middle point of AY. Ex. 1, p. 104.
Hence the required locus is the straight line drawn parallel to BC , and passing through E, the middle point of the perp. from A to $B C$.
3. Find the locus of a point equidistant from two given intersecting straight lines.
[See Ex. 3, p. 55.]
4. Find the locus of a point at a given radial distance from the circumference of a given circle.
5. Find the locus of a point which moves so that the sum of its distances from two given intersecting straight lines of unlimited length is constant.
6. Find the locus of a point when the differences of its distances from two given intersecting straight lines of unlimited length is constant.
7. A straight rod of given length slides between two straight rulers placed at right angles to one another : find the locus of its middle point.
[See Ex. 2, p. 108.]
8. On a given base as hypotenuse right-angled triangles are described: find the locus of their vertices. [See Ex. 2, p. 108.]
9. $A B$ is a given straight line, and $A X$ is the perpendicular drawn from A to any straight line passing through B : find the locus of the middle point of $A X$.
10. Find the locus of the vertex of a triangle, when the base and area are given.
11. Find the locus of the intersection of the diagonals of a parallelogram, of which the base and area are given.
12. Find the locus of the intersection of the medians of triangles described on a given base and of given area.

X. ON THE INTERSECTION OF LOCI.

It appears from various problems which have already been considered, that we are often required to find a point, the position of which is subject to two given conditions. The method of loci is very useful in solving problems of this kind; for corresponding to each condition there will be a locus on which the required point must lie. Hence all points which are common to these two loci, that is, all the points of intersection of the loci, will satisfy both the given conditions.

Example 1. To construct a triangle, having given the base, the altitude, and the length of the median which bisects the base.

Let $A B$ be the given base, and P and Q the lengths of the altitude and median respectively :
then the triangle is known if its vertex is known.
(i) Draw a straight line $C D$ parallel to $A B$, and at a distance from it equal to P :
then the required vertex must lie on CD .
(ii) Again, from the middle point of $A B$ as centre, with radius equal to Q, describe a circle :
then the required vertex must lie on this circle.
Hence any points which are common to CD and the circle, satisfy both the given conditions : that is to say, if CD intersect the circle in E, F each of the points of intersection might be the vertex of the required triangle. This supposes the length of the median Q to be greater than the altitude.

Example 2. To find a point equidistant from three given points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, which are not in the same straight line.
(i) The locus of points equidistant from A and B is the straight line PQ, which bisects $A B$ at right angles. Ex. 1, p. 123.
(ii) Similarly the locus of points equidistant from B and C is the straight line $R S$ which bisects $B C$ at right angles.

Hence the point common to PQ and RS must satisfy both conditions : that is to say, the point of intersection of $P Q$ and $R S$ will be equidistant from A, B, and C .

Obs. These principles may also be used to prove the theorems relating to concurrency already given on page 111.

Example. To prove that the bisectors of the angles of a triangle are concurrent.

Let $A B C$ be a triangle.
Bisect the $\angle{ }^{8} A B C, B C A$ by straight lines BO, CO : these must meet at some point $\mathrm{O} . \quad A x .12$. Join OA.
Then shall OA bisect the $\angle B A C$.
Now BO is the locus of points equidistant from BC, BA; Ex. 3, p. 55. $\therefore O P=O R$.
Similarly CO is the locus of points equi-
 distant from $B C, C A$.

$$
\therefore O P=O Q ; \text { hence } O R=O Q
$$

$\therefore O$ is on the locus of points equidistant from $A B$ and $A C$: that is, $O A$ is the bisector of the $\angle B A C$.
Hence the bisectors of the three L^{8} meet at the point O.

It may happen that the data of the problem are so related to one another that the resulting loci do not intersect. In this case the problem is impossible.

For example, if in Ex. 1, page 126, the length of the given median is less than the given altitude, the straight line CD will not be intersected by the circle, and no triangle can fulfil the conditions of the problem. If the length of the median is equal to the given altitude, one point is common to the two loci ; and consequently only one solution of the problem exists: and we have seen that there are two solutions, if the median is greater than the altitude.

In examples of this kind the student should make a point of investigating the relations which must exist among the data, in order that the problem may be possible; and he must observe that if under certain relations two solutions are possible, and under other relations no solution exists, there will always be some intermediate relation under which one and only one solution is possible.

EXAMPLES.

1. Find a point in a given straight line which is equidistant from two given points.
2. Find a point which is at given distances from each of two given straight lines. How many solutions are possible ?
3. On a given base construct a triangle, having given one angle at the base and the length of the opposite side. Examine the relations which must exist among the data in order that there may be two solutions, one solution, or that the problem may be impossible.
4. On the base of a given triangle construct a second triangle equal in area to the first, and having its vertex in a given straight line.
5. Construct an isosceles triangle equal in area to a given triangle, and standing on the same base.
6. Find a point which is at a given distance from a given point, and is equidistant from two given parallel straight lines.

When does this problem admit of two solutions, when of one only, and when is it impossible?

BOOK II.

Book II. deals with the areas of rectangles and squares.
A Rectangle has been defined (Book I., Def. 37) as a parallelogram which has one of its angles a right angle.

It should be remembered that if a parallelogram has one right angle, all its angles are right angles.
[I. 46, Cor.]

Definitions.

1. A rectangle is said to be contained by any two of its sides which form a right angle: for it is clear that both the form and magnitude of a rectangle are fully determined when the lengths of two such sides are given.

Thus the rectangle $A C D B$ is said to be contained by AB, AC; or by CD , $D B$: and if X and Y are two straight lines equal respectively to $A B$ and $A C$, then the rectangle contained by X and Y is equal to the rectangle contained by $A B, A C$.

After Proposition 3, we shall use the abbreviation rect. $A B, A C$ to denote the rectangle contained by $A B$ and AC.
2. In any parallelogram the figure formed by either of the parallelograms about a diagonal together with the two complements is called a gnomon.

Thus the shaded portion of the annexed diagram, consisting of the parallelogram EH together with the complements AK, KC is the gnomon AHF.

The other gnomon in the diagram is that which is made up of the figures $A K$, GF and $F H$, namely the gnomon AFH.

Introductory.

Before entering upon Book II. the student is reminded of the following arithmetical rule :

Rule. To find the area of a rectangle, multiply the number of units in the length by the number of units in the breadth; the product will be the number of square units in the area.

For example, if the two sides $A B, A D$ of the rectangle $A B C D$ are respectively four and three inches long, and if through the points of division parallels are drawn as in the annexed figure, it is seen that the rectangle is divided into three rows, each containing four square inches, or into four columns, each containing three square inches.

Hence the whole rectangle contains 3×4, or 12, square inches.
Similarly if $A B$ and $A D$ contain m and n units of length respectively, it follows that the rectangle $A B C D$ will contain $m \times n$ units of area: further, if $A B$ and $A D$ are equal, each containing m units of length, the rectangle becomes a square, and contains m^{2} units of area.

From this we conclude that the rectangle contained by two straight lines in Geometry corresponds to the product of two numbers in Arithmetic or Algebra; and that the square described on a straight line corresponds to the square of a number. Accordingly it will be found in the course of Book II. that several theorems relating to the areas of rectangles and squares are analogous to well-known algebraical formulæ.

In view of these principles the rectangle contained by two straight lines $A B, B C$ is sometimes expressed in the form of a product, as $A B . B C$, and the square described on $A B$ as $A B^{2}$. This notation, together with the signs + and - , will be employed in the additional matter appended to this book; but it is not admitted into Euclid's text because it is desirable in the first instance to emphasize the distinction between geometrical magnitudes themselves and the numerical equivalents by which they may be expressed arithmetically.

> H.S.E.

Proposition 1. Theorem.

If there are two straight lines, one of which is divided into any number of parts, the rectangle contained by the two straight lines is equal to the sum of the rectangles contained by the undivided straight line and the several parts of the divided line.

Let P and $A B$ be two straight lines, and let $A B$ be divided into any number of parts $A C, C D, D B$.

Then shall the rectangle contained by P, AB be equal to the sum of the rectangles contained by P, AC, by P, CD, and by P, DB.

Construction. From A draw AF perp. to AB ;
I. 11. and make $A G$ equal to P.
I. 3. Through G draw $G H$ par to $A B$;
I. 31 . and through C, D, B draw CK, DL, BH par to AG.
Proof. Now the fig. AH is made up of the figs. AK, CL, DH , and is therefore equal to their sum ; and of these,
the fig. $A H$ is the rectangle contained by $P, A B$;
for it is contained by $A G, A B$; and $A G=P$:
and the fig. $A K$ is the rectangle contained by $P, A C$; for it is contained by $A G, A C$; and $A G=P$:
also the fig. $C L$ is the rectangle contained by $P, C D$;
for it is contained by CK, CD ;

$$
\text { and } C K=\text { the opp. side } A G \text {, and } A G=P \text {. }
$$

I. 34.

Similarly the fig. DH is the rectangle contained by P, DB.
\therefore the rectangle contained by $P, A B$ is equal to the sum of the rectangles contained by $P, A C$, by $P, C D$, and by P, DB.

CORRESPONDING ALGEBRAICAL FORMULA.

In accordance with the principles explained on page 129, the result of this proposition may be written thus:

$$
P \cdot A B=P \cdot A C+P \cdot C D+P \cdot D B .
$$

Now if the line P contains p units of length, and if $A C, C D, D B$ contain a, b, c units respectively,

$$
\text { then } \mathrm{AB}=a+b+c \text {; }
$$

hence the statement

$$
\begin{gathered}
\mathrm{P} \cdot \mathrm{AB}=\mathrm{P} \cdot \mathrm{AC}+\mathrm{P} \cdot \mathrm{CD}+\mathrm{P} \cdot \mathrm{DB} \\
p(a+b+c)=p a+p b+p c .
\end{gathered}
$$

[Note. It must be understood that the rule given on page 129, for expressing the area of a rectangle as the product of the lengths of two adjacent sides, implies that those sides are commensurable, that is, that they can be expressed exactly in terms of some common unit.

This however is not always the case. Two straight lines may be so related that it is impossible to divide either of them into equal parts, of which the other contains an exact number. Such lines are said to be incommensurable. Hence if the adjacent sides of a rectangle are incommeusurable, we cannot choose any linear unit in terms of which these sides may be exactly expressed ; and thus it will be impossible to subdivide the rectangle into squares of unit area, as illustrated in the figure of page 129. We do not here propose to enter further into the subject of incommensurable quantities: it is sufficient to point out that further knowledge of them will convince the student that the area of a rectangle may be expressed to any required degree of accuracy by the product of the lengths of two adjacent sides, whether those lengths are commensurable or not.]

Proposition 2. Theorem.

If a straight line is divided into any two parts, the square on the whole line is equal to the sum of the rectangles contained by the whole line and each of the parts.

Let the straight line $A B$ be divided at C into the two parts $A C, C B$.

Then shall the square on AB be equal to the sum of the rectangles contained by AB, AC, and by AB, BC.

Construction. On AB describe the square ADEB. I. 46. Through C draw CF par to AD. I. 31.

Proof. Now the fig. AE is made up of the figs. AF, CE : and of these,

$$
\text { the fig. } A E \text { is the sq. on } A B \text { : }
$$

Constr.
and the fig. $A F$ is the rectangle contained by $A B, A C$;
for it is contained by $A D, A C$; and $A D=A B$:
also the fig. $C E$ is the rectangle contained by $A B, B C$; for it is contained by $B E, B C$; and $B E=A B$.
\therefore the sq. on $A B=$ the sum of the rectangles contained by $A B, A C$, and by $A B, B C$.
Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.
The result of this proposition may be written

$$
A B^{2}=A B \cdot A C+A B \cdot B C .
$$

Let $A C$ contain a units of length, and let CB contain b units, then $\mathrm{AB}=a+b$ units ;
and we have

$$
(a+b)^{2}=(a+b) a+(a+b) b
$$

Proposition 3. Theorem.

If a straight line is divided into any two parts, the rectangle contained by the whole and one of the parts is equal to the square on that part together with the rectangle contained by the two parts.

Let the straight line $A B$ be divided at C into the two parts AC, CB.

Then shall the rectangle contained by AB, AC be equal to the square on AC together with the rectangle contained by AC, CB.

Construction. On AC describe the square AFDC.
I. 46. Through B draw BE parl to AF, meeting FD produced in E.
I. 31 .

Proof. Now the fig. AE is made up of the figs. AD, CE ; and of these,
the fig. $A E$ is the rectangle contained by $A B, A C$; for $A F=A C$;
and the fig. $A D$ is the sq. on $A C$; Constr.
also the fig. $C E$ is the rectangle contained by $A C, C B$; for $C D=A C$.
\therefore the rectangle contained by $A B, A C$ is equal to the sq. on $A C$ together with the rectangle contained by $A C, C B$. Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written $A B . A C=A C^{2}+A C . C B$.
Let AC, CB contain a and b units of length respectively, then $A B=a+b$ units ;
and we have $(a+b) a=a^{2}+a b$.
Note. It should be observed that Props. 2 and 3 are special cases of Prop. 1.

Proposition 4. Theorem.

If a straight line is divided into any two parts, the square on the whole line is equal to the sum of the squares on the two parts together with twice the rectangle contained by the two parts.

Let the straight line $A B$ be divided at C into the two parts AC, CB.

Then shall the sq. on AB be equal to the sum of the sqq. on AC, CB, together with twice the rect. AC, CB.

Construction. On AB describe the square ADEB. I. 46. Join BD.
Through C draw CF par to BE, meeting BD in G. I. 31. Through G draw HGK par to AB.
It is first required to shew that the fig. CK is the sq. on CB.

Proof. Because CF and AD are par ${ }^{1}$, and $B D$ meets them, \therefore the ext. angle $C G B=$ the int. opp. angle ADB. I. 29.

And since $A B=A D$, being sides of a square;
\therefore the angle $A D B=$ the angle $A B D$;
I. 5.
\therefore the angle CGB $=$ the angle CBG.

$$
\therefore C B=C G \text {. }
$$

I. 6.

And the opp. sides of the par ${ }^{m}$ CK are equal ; I. 34. \therefore the fig. CK is equilateral ;
also the angle CBK is a right angle ; Def. 30.
\therefore CK is a square, and it is described on CB. I. 46, Cor.
Similarly, the fig. HF is the sq. on HG, that is, the sq. on $A C$;

$$
\text { for } H G=\text { the opp. side } A C \text {. }
$$

I. 34 .

Again, the complement $A G=$ the complement $G E ; 1.43$. and the fig. $A G=$ the rect. $A C, C B$; for $C G=C B$.
\therefore the two figs. $A G, G E=t w i c e$ the rect. $A C, C B$.

* Now the sq. on $A B=$ the fig. $A E$
$=$ the figs. $\mathrm{HF}, \mathrm{CK}, \mathrm{AG}, \mathrm{GE}$
$=$ the sqq. on $A C, C B$ together with twice the rect. $A C, C B$.
\therefore the sq. on $A B=$ the sum of the sqq. on $A C, C B$ with twice the rect. AC, CB. Q.E.D.

Corollary 1. Parallelograms about the diagonals of a square are themselves squares.

Corollary 2. If a straight line is bisected, the square on ihe whole line is four times the square on half the line.

* For the purpose of oral work, this step of the proof may conveniently be arranged as follows :

Now the sq. on $A B$ is equal to the fig. $A E$, that is, to the figs. $\mathrm{HF}, \mathrm{CK}, \mathrm{AG}, \mathrm{GE}$; that is, to the sqq. on $A C, C B$ together with twice the rect. $A C, C B$.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this important Proposition may be written thus:

$$
A B^{2}=A C^{2}+C B^{2}+2 A C . C B .
$$

Let

$$
\begin{gathered}
\mathrm{AC}=a, \text { and } \mathrm{CB}=b ; \\
\text { then } \mathrm{AB}=a+b ;
\end{gathered}
$$

hence the statement $A B^{2}=A C^{2}+C B^{2}+2 A C . C B$
becomes
$(a+b)^{2}=a^{2}+b^{2}+2 a b$.

Proposition 5. Theorem.

If a straight line is divided equally and also unequally, the rectangle contained by the unequal parts, together with the square on the line between the points of section, is equal to the square on half the line.

Let the straight line $A B$ be divided equally at P, and unequally at \mathbf{Q}.

Then the rect. AQ, QB together with the sq. on PQ shall be equal to the sq. on PB .

Construction. On PB describe the square PCDB. I. 46. Join BC.
Through Q draw QE par to BD, cutting BC in F. I. 31. Through F draw LFHG par ${ }^{1}$ to AB. Through A draw AG par to BD.
Proof.
Now the complement PF= the complement FD: I. 43. to each add the fig. QL;
then the fig. $P L=$ the fig. $Q D$.
But the fig. $\mathrm{PL}=$ the fig. AH , for they are $\mathrm{par}^{\mathrm{ms}}$ on equal bases and between the same par ${ }^{18}$;
\therefore the fig. $\mathrm{AH}=$ the fig. QD.
To each add the fig. PF ;
then the fig. $\mathrm{AF}=$ the gnomon PLE.
Now the fig. $A F$ is the rect. $A Q, Q B$; for $Q F=Q B$;
\therefore the rect. $\mathrm{AQ}, \mathrm{QB}=$ the gnomon PLE.
To each add the sq. on PQ, that is, the fig. HE ; II. 4. then the rect. $A Q, Q B$ with the sq. on $P Q$
$=$ the gnomon PLE with the fig. HE
$=$ the whole fig. PD,
which is the sq. on PB.

That is, the rect. AQ, QB together with the square on $P Q$ is equal to the $s q$. on $P B$.
Q.E.D.

Corollary. From this Proposition it follows that the difference of the squares on two straight lines is equal to the rectangle contained by their sum and difference.

For let X and Y be the given st. lines, of which X is the greater.

Draw AP equal to X, and produce it to B, making $P B$ equal to $A P$, that is to X.

X
Y
From PB cut off PQ equal to Y .
Then AQ is equal to the sum of X and Y, and $Q B$ is equal to the difference of X and Y.
Now because $A B$ is divided equally at P and unequally at Q,
\therefore the rect. AQ, QB with sq. on $\mathrm{PQ}=$ the sq. on PB ; 11. 5. that is, the difference of the sqq. on $\mathrm{PB}, \mathrm{PQ}=$ the rect. AQ, QB. or, the difference of the sqq. on X and $Y=$ the rectangle contained
by the sum and the difference of X and Y.

CORRESPONDING ALGEBRAICAL FORMULA.
This result may be written

$$
\mathrm{AQ} \cdot \mathrm{QB}+\mathrm{PQ}^{2}=\mathrm{PB}^{2} .
$$

Let $\mathrm{AB}=2 a$; and let $\mathrm{PQ}=b$;
then AP and PB each $=a$.

$$
\text { Also } \mathrm{AQ}=a+b \text {; and } \mathrm{QB}=a-b
$$

Hence the statement $\mathrm{AQ} . \mathrm{QB}+\mathrm{PQ}^{2}=\mathrm{PB}^{2}$
becomes
or

$$
\begin{aligned}
& (a+b)(a-b)+b^{2}=a^{2} \\
& (a+b)(a-b)=a^{2}-b^{2}
\end{aligned}
$$

EXERCISE.

In the above figure shew that AP is half the sum of AQ and QB ; and that PQ is half their difference.

Proposition 6. Theorem.

If a straight line is bisected and produced to any point, the rectangle contained by the whole line thus produced and the part of it produced, together with the square on half the line bisected, is equal to the square on the straight line made up of the half and the part produced.

Let the straight line $A B$ be bisected at P, and produced to Q .

Then the rect. AQ, QB together with the sq. on PB shall be equal to the sq. on PQ .

Construction. On PQ describe the square PCDQ. I. 46. Join QC.
Through B draw BE par ${ }^{1}$ to QD, meeting QC in F. I. 31. Through F draw LFHG par to AQ.
Through A draw AG par ${ }^{1}$ to QD.
Proof. Now the complement PF = the complement FD. I. 43.
But the fig. $P F=$ the fig. $A H$; for they are par ${ }^{m s}$ on equal bases and between the same par ${ }^{\text {ls }}$.
I. 36.
\therefore the fig. $\mathrm{AH}=$ the fig. FD.
To each add the fig. PL;
then the fig. $\mathrm{AL}=$ the gnomon PLE.
Now the fig. $A L$ is the rect. $A Q, Q B$; for $Q L=Q B$;
\therefore the rect. $\mathrm{AQ}, \mathrm{QB}=$ the gnomon PLE.
To each add the sq. on PB, that is, the fig. HE ;
then the rect. $A Q, Q B$ with the sq. on $P B$
$=$ the gnomon PLE with the fig. HE
$=$ the whole fig. PD,
which is the square on PQ .
That is, the rect. $A Q, Q B$ together with the sq. on $P B$ is equal to the sq. on PQ.
Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written

$$
\mathrm{AQ} \cdot \mathrm{QB}+\mathrm{PB}^{2}=\mathrm{PQ}^{2} .
$$

Let $\mathrm{AB}=2 a$; and let $\mathrm{PQ}=b$;

$$
\text { then } \mathrm{AP} \text { and } \mathrm{PB} \text { each }=a \text {. }
$$

$$
\text { Also } \mathrm{AQ}=a+b \text {; and } \mathrm{QB}=b-a
$$

Hence the statement $\mathrm{AQ} . \mathrm{QB}+\mathrm{PB}^{2}=\mathrm{PQ}^{2}$
becomes
$(a+b)(b-a)+a^{2}=b^{2}$,
or
$(b+a)(b-a)=b^{2}-a^{2}$.

Definition. If a point X is taken in a straight line $A B$, or in $A B$ produced, the distances of the point of section from the extremities of $A B$ are said to be the segments into which $A B$ is divided at X.

In the former case $A B$ is

vided internally, in the latter case externally.
Thus in each of the annexed figures, the segments into which $A B$ is divided at X are the lines $A X$ and $X B$.

This definition enables us to include Props. 5 and 6 in a single Enunciation.

If a straight line is bisected, and also divided (internally or externally) into two unequal segments, the rectangle contained by the unequal segments is equal to the difference of the squares on half the line, and on the line between the points of section.

EXERCISE.

Shew that the Enunciations of Props. 5 and 6 may take the following form:

The rectangle contained by two straight lines is equal to the difference of the squares on half their sum and on half their difference.
[See Ex., p. 137.]

Proposition 7. Theorem.

If a straight line is divided into any two parts, the sum of the squares on the whole line and on one of the parts is equal to twice the rectangle contained by the whole and that part, together with the square on the other part.

Let the straight line $A B$ be divided at C into the two parts $A C, C B$.

Then shall the sum of the sqq. on AB, BC be equal to twice the rect. AB, BC together with the sq. on AC .

Construction. On AB describe the square ADEB. I. 46. Join BD.
Through C draw CF par' to BE, meeting BD in G. I. 31. Through G draw HGK par to AB.
Proof. Now the complement $\mathrm{AG}=$ the complement GE ; I. 43. to each add the fig. CK :
then the fig. $A K=$ the fig. $C E$.
But the fig. $A K$ is the rect. $A B, B C$; for $B K=B C$; \therefore the two figs $A K, C E=$ twice the rect. $A B, B C$.
But the two figs. AK, CE make up the gnomon AKF and the fig. CK :
\therefore the gnomon $A K F$ with the fig. $C K=$ twice the rect. $A B, B C$.
To each add the fig. HF, which is the sq. on AC: then the gnomon AKF with the figs. CK, HF
$=t$ wice the rect. $A B, B C$ with the sq. on $A C$. But the gnomon AKF with the figs. CK, HF make up the figs. $A E, C K$, that is to say, the sqq. on $A B, B C$;
\therefore the sqq. on $A B, B C=$ twice the rect. $A B, B C$ with the sq. on AC.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this proposition may be written

$$
A B^{2}+B C^{2}=2 A B \cdot B C+A C^{2}
$$

Let $\mathrm{AB}=a$, and $\mathrm{BC}=b$; then $\mathrm{AC}=a-b$.
Hence the statement
becomes or

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =2 \mathrm{AB} \cdot \mathrm{BC}+\mathrm{AC}^{2} \\
a^{2}+b^{2} & =2 a b+(a-b)^{2}, \\
(a-b)^{2} & =a^{2}-2 a b+b^{2} .
\end{aligned}
$$

Comparing this result with that obtained from Prop. 4, we see that
(i) The square on the sum of two straight lines is greater than the sum of the squares on those lines by twice the rectangle contained by them. [Prop. 4.]
(ii) The square on the difference of two straight lines is less than the sum of the squares on those lines by twice the rectangle contained by them. [Prop. 7.]

ALTERNATIVE PROOFS OF PROPOSITIONS 4, 5, 6, 7.

The following alternative proofs are recommended for purposes of revision, as affording useful exercise on the enunciations of preceding propositions, and illustrating the way in which many examples on Book II. may be solved. The beginner however should not adopt these proofs until he has thoroughly mastered those given in the text, where the rectangles and squares are actually represented in the diagrams.

Proposition 4.

Let the straight line $A B$ be divided at C into two parts $A C, C B$. Then shall the sq. on AB be equal to the sum of the sqq. on AC, CB with twice the rect. AC, CB.

Now the sq. on $A B=$ the rect. $A B, A C$ with the rect. $A B, C B$. II. 2. But the rect. $A B, A C=$ the sq. on $A C$ with the rect. $A C, C B ;$ ir. 3. and the rect. $A B, C B=$ the sq. on $C B$ with the rect. $A C, C B$. II. 3.
Hence the sq. on $A B=$ the sum of the sqq. on $A C, C B$ with twice the rect. $A C, C B$.

Proposition 5.

Let the straight line $A B$ be divided equally at P, and unequally at Q.

Then shall the rect. AQ, QB with the sq. on PQ be equal to the sq. on PB.

Now the rect. $\mathrm{AQ}, \mathrm{QB}=$ the rect. AP, QB with the rect. PQ, QB, II. 1. $=$ the rect. PB, QB with the rect. PQ, QB.
But the rect. $\mathrm{PB}, \mathrm{QB}=$ the sq. on QB with the rect. PQ, QB; II. 3.
\therefore the rect. $A Q, Q B=$ the sq. on $Q B$ with twice the rect. $P Q, Q B$.
To each of these equals and the sq. on PQ .
Then the rect. $A Q, Q B$ with the sq. on $P Q$
$=$ the sqq. on PQ, QB with twice the rect. PQ, QB
$=$ the sq. on PB.
II. 4.

Proposition 6.

Let the straight line $A B$ be bisected at P, and produced to Q.
Then shall the rect. AQ, QB with the sq. on PB be equal to the $s q$. on PQ .

Now the rect. $A Q, Q B=$ the rect. $A P, B Q$ with the rect. $P Q, B Q$ II. 1. $=$ the rect. PB, BQ with the rect. PQ, BQ.
But the rect. $P Q, B Q=$ the sq. on $B Q$ with the rect. $P B, B Q$. II. 3 .
\therefore the rect. $\mathrm{AQ}, \mathrm{QB}=$ the sq. on BQ with twice the rect. PB, BQ.
To each of these equals add the sq. on PB.
Then the rect. AQ, QB with the sq, on PB
$=$ the sqq. on PB, BQ with twice the rect. PB, BQ
$=$ the sq. on PQ.
п. 4.

Proposition 7.

Let the straight line $A B$ be divided at any point C.
Then shall the sum of the sqq. on AB, BC be equal to twice the rect. AB, BC with the sq. on AC .

Now the sq. on $A B=$ the sqq. on $A C, C B$ with twice the rect. $A C, C B$.
II. 4.

To each of these equals add the $s q$. on $B C$.
Then the sqq. on $A B, B C=$ the sq. on $A C$ with tuice the sq. on $B C$ and twice the rect. AC. CB.
But twice the sq. on $B C$ with twice the rect. $A C, C B$ $=t$ wice the rect. AB, BC.
II. 3.
\therefore the sqq. on $A B, B C=$ the sq. on $A C$ with twice the rect. $A B, B C$

Obs. The following proposition being little used, we merely give the figure and the leading points of Euclid's proof.

Proposition 8. Theorem.

If a straight line is divided into any two parts, four times the rectangle contained by the whole line and one of the parts, together with the square on the other part, is equal to the square on the straight line which is made up of the whole and the first named part.

Let $A B$ be divided at C.
Produce $A B$ to D, making $B D$ equal to BC.

Then shall four times the rect. AB, BC with the sq. on $\mathrm{AC}=$ the sq. on AD .

On AD describe the square AEFD; and complete the construction as indicated in the figure.

Euclid then proves (i) that the figs. CK, $B N, G R, K O$ are all equal :

(ii) that the figs. AG, MP, PL, RF are all equal.

Hence the eight figures named above are together four times the sum of the figs. AG, CK; that is, four times the fig. AK; that is, four times the rect. $A B, B C$.

But the whole fig. AF, namely the sq. on AD, is made up of these eight figures, together with the fig. $X H$, which is the sq. on $A C$:
hence the sq. on $A D=$ four times the rect. $A B, B C$, together with the sq. on AC.

The accompanying figure will suggest a less cumbrous proof, which we leave as an Exercise to the student.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this proposition may be written

$$
4 A B \cdot B C+A C^{2}=A D^{2}
$$

Let $\mathrm{AB}=a$, and $\mathrm{BC}=b$; then $\mathrm{AC}=a-b$, and $\mathrm{AD}=a+b$.
Hence we have $\quad 4 a b+(a-b)^{2}=(a+b)^{2}$;
or

$$
(a+b)^{2}-(a-b)^{2}=4 a b
$$

Proposition 9. Theorem. [Euclid's Proof.]

If a straight line is divided equally and also unequally, the sum of the squares on the two unequal parts is twice the sum of the squares on half the line and on the line between the points of section.

Let the straight line $A B$ be divided equally at P, and unequally at Q .

Then shall the sum of the sqq. on AQ, QB be twice the sum of the sqq. on AP, PQ.

Construction. At P draw PC at rt. angles to AB ; 1.11. and make PC equal to AP or PB .
I. 3 . Join AC, BC.
Through \mathbf{Q} draw QD par ${ }^{1}$ to PC ;
I. 31 . and through D draw $D E$ par to $A B$. Join AD.

Proof. Then since $P A=P C$, Constr. \therefore the angle $\mathrm{PAC}=$ the angle PCA. I. 5 .

And since, in the triangle APC, the angle APC is a rt. angle,

Constr.
\therefore the sum of the angles PAC, PCA is a rt. angle: I. 32. hence each of the angles PAC, PCA is half a rt. angle.
So also, each of the angles PBC, PCB is half a rt. angle. \therefore the whole angle ACB is a rt. angle.
Again, the ext. angle CED $=$ the int. opp. angle CPB ; I. 29. \therefore the angle CED is a rt. angle :
and the angle ECD is half a rt. angle. Proved.
\therefore the remaining angle EDC is half a rt. angle ; I. 32.
\therefore the angle ECD $=$ the angle EDC ;

$$
\therefore E C=E D .
$$

I. 6.

Again, the ext. angle $\mathrm{DQB}=$ the int. opp. angle CPB ; I. 29. \therefore the angle DQB is a rt. angle.
And the angle QBD is half a rt. angle; Proved.
\therefore the remaining angle QDB is half a rt. angle ; 1. 32.
\therefore the angle QBD $=$ the angle QDB;

$$
\therefore \mathrm{QD}=\mathrm{QB} .
$$

Now the sq. on $\mathrm{AP}=$ the sq. on PC ; for $\mathrm{AP}=\mathrm{PC}$. Constr. And since the angle APC is a rt. angle,
\therefore the sq. on $A C=$ the sum of the sqq. on AP, PC ; I. 47. \therefore the sq. on AC is twice the sq. on AP.
Similarly, the sq. on CD is twice the sq. on ED, that is, twice the sq. on the opp. side PQ.
I. 34.

Now the sqq. on AQ, QB = the sqq. on AQ, QD Proved. $=$ the sq. on AD, for AQD is a rt. angle ;
I. 47.
$=$ the sum of the sqq. on $A C, C D$, for $A C D$ is a rt. angle ; I. 47.
$=$ twice the sq. on AP with twice
the sq. on PQ. Proved.

That is,

the sum of the sqq. on $A Q, \mathbf{Q B}=$ twice the sum of the sqqon AP, PQ.
Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.
The result of this proposition may be written

$$
A Q^{2}+\mathrm{QB}^{2}=2\left(\mathrm{AP}^{2}+P Q^{2}\right)
$$

Let $\mathrm{AB}=2 a$; and $\mathrm{PQ}=b$;
then AP and PB each $=a$.

$$
\text { Also } \mathrm{AQ}=a+b \text {; and } \mathrm{QB}=a-b
$$

Hence the statement
becomes

$$
\begin{gathered}
\mathrm{AQ}^{2}+\mathrm{QB}^{2}=2\left(\mathrm{AP}^{2}+\mathrm{QP}^{2}\right) \\
(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)
\end{gathered}
$$

[Note. For alternative proofs of this proposition, see page 148.]

Proposition 10. Theorem. [Euclid's Proof.]
If a straight line is bisected and produced to any point, the sum of the squares on the whole line thus produced, and on the part produced, is twice the sum of the squares on half the line bisected and on the line made up of the half and the part produced.

Let the st. line $A B$ be bisected at P, and produced to \mathbf{Q}. Then shall the sum of the sqq. on AQ, QB be twice the sum of the sqq. on AP, PQ.
Construction. At P draw PC at right angles to AB ; I. 11. and make PC equal to PA or PB. I. 3. Join AC, BC.
Through Q draw QD par to PC, to meet CB produced in D;
I. 31.
and through D draw $D E$ par to $A B$, to meet $C P$ produced in E.

Proof.

 Then since $P A=P C$,Constr. \therefore the angle PAC $=$ the angle PCA. I. 5. And since, in the triangle APC, the angle APC is a rt. angle,
\therefore the sum of the angles PAC, PCA is a rt. angle. I. 32. Hence each of the angles PAC, PCA is half a rt. angle. So also, each of the angles PBC, PCB is half a rt. angle. \therefore the whole angle ACB is a rt. angle.
Again, the ext. angle CPB = the int. opp. angle CED: I. 29. \therefore the angle CED is a rt. angle :
and the angle ECD is half a 1t. angle; Proved.
\therefore the remaining angle EDC is half a rt. angle. I. 32. \therefore the angle ECD $=$ the angle EDC ;
I. 6 .

Again, the angle DQB = the alt. angle CPB ; I. 29. \therefore the angle DQB is a rt. angle.
Also the angle $\mathrm{QBD}=$ the vert. opp. angle CBP: I. 15. that is, the angle QBD is half a rt. angle.
\therefore the remaining angle QDB is half a rt. angle : 1.32 . \therefore the angle QBD $=$ the angle QDB;

$$
\therefore \mathrm{QB}=\mathrm{QD} .
$$

I. 6 .

Now the sq. on $A P=$ the sq. on $P C$; for $A P=P C$. Constr.
And since the angle APC is a rt. angle,
the sq. on $A C=$ the sum of the sqq. on $A P, P C ;$ I. 47. \therefore the sq. on $A C$ is twice the sq. on $A P$.
Similarly, the sq. on CD is twice the sq. on ED, that is, twice the sq. on the opp. side PQ.
I. 34 .

Now the sqq. on $A Q, Q B=$ the sqq. on $A Q, Q D \quad$ Proved. $=$ the sq. on $A D$, for $A Q D$ is a $r t$. angle;
I. 47.
$=$ the sum of the sqq. on $A C, C D$, for $A C D$ is a rt. angle; I. 47. =twice the sq. on AP with twice the sq. on PQ. Proved.

That is,

the sum of the sqq. on $A Q, Q B$ is twice the sum of the sqq. on $A P, P Q$.
Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.
The result of this proposition may be written

$$
A Q^{2}+Q B^{2}=2\left(A P^{2}+P Q^{2}\right)
$$

Let $\mathrm{AB}=2 a$; and $\mathrm{PQ}=b$;
then AP and PB each $=a$.

$$
\text { Also } \mathrm{AQ}=a+b \text {; and } \mathrm{QB}=b-a
$$

Hence we have

$$
(a+b)^{2}+(b-a)^{2}=2\left(a^{2}+b^{2}\right)
$$

[Note. For alternative proofs of this proposition, see page 149.]

Proposition 9. [Alternative Proof.]

If a straight line is divided equally and also unequally, the sum of the squares on the two unequal parts is twice the sum of the squares on half the line and on the line between the points of section.

Let the straight line $A B$ be divided equally at P and unequally at \mathbf{Q}.

Then shall the sum of the sqq. on AQ, QB be twice the sum of the sqq. on AP, PQ.

Proof.
The sq. on $A Q=$ the sum of the sqq. on $A P, P Q$ with twice the rect. AP, PQ
II. 4.
$=$ the sum of the sqq. on AP, PQ with twice the rect. PB, PQ; for $\mathrm{PB}=\mathrm{AP}$.
To each of these equals add the sq. on QB.
Then the sqq. on $A Q, Q B=$ the sum of the sqq. on $A P, P Q$ with twice the rect. PB, PQ and the sq. on QB.
But twice the rect. PB, PQ and the sq. on QB
$=$ the sum of the sqq. on PB, PQ. II. 7.
\therefore the sqq. on $A Q, Q B=$ the sum of the sqq. on $A P, P Q$ with the sum of the sqq. on PB, PQ $=$ twice the sum of the sqq. on AP, PQ.
Q.E.D.

Note. The following concise proof, obtained from II. 4 and II. 5 , is useful as an exercise, but it is hardly admissible as a formal demonstration owing to its algebraical use of the negative sign.

We have

$$
\begin{aligned}
\mathrm{AQ}^{2}+\mathrm{QB}^{2} & =\mathrm{AB}^{2}-2 \mathrm{AQ} \cdot \mathrm{QB} \\
& =4 \mathrm{~PB}^{2}-2 \mathrm{AQ} \cdot \mathrm{QB} \\
& =4 \mathrm{~PB}^{2}-2\left(\mathrm{~PB}^{2}-\mathrm{PQ}^{2}\right) \\
& =2 \mathrm{~PB}^{2}+2 \mathrm{PQ}^{2} .
\end{aligned}
$$

$$
\text { II. } 4 .
$$

Proposition 10. [Alternative Proof.]

If a straight line is bisected and produced to any point, the sum of the squares on the whole line thus produced and on the part produced, is twice the sum of the squares on half the line bisected and on the line made up of the half and the part produced.

Let the straight line $A B$ be bisected at P, and produced to \mathbf{Q}.

Then shall the sum of the sqq. on $\mathbf{A Q}, \mathbf{Q B}$ be twice the sum of the sqq. on AP, PQ.

Proof.
The sq. on $A Q=$ the sum of the sqq. on $A P, P Q$ with twice the rect. AP, PQ
II. 4.
$=$ the sum of the sqq. on AP, PQ with twice the rect. PB, PQ; for $\mathrm{PB}=\mathrm{AP}$.
To each of these equals add the sq. on QB.
Then the sqq. on $A Q, Q B=$ the sum of the sqq. on $A P, P Q$ with twice the rect. PB, PQ and the sq. on QB.
But twice the rect. PB, PQ and the sq. on QB
= the sum of the sqq. on PB, PQ. II. 7.
\therefore the sqq. on $A Q, Q B=$ the sum of the sqq. on $A P, P Q$ with the sum of the sqq. on PB, PQ $=$ twice the sum of the sqq. on $A P, P Q$. Q.E.D.

Note. Another proof of this proposition, based on II. 7 and II. 6 , is indicated by the following steps:

$$
\text { We have } \quad \begin{array}{rlr}
\mathrm{AQ}^{2}+\mathrm{QB}^{2} & =2 A Q . Q B+\mathrm{AB}^{2} & \text { II. } 7 . \\
& =2 A Q \cdot Q B+4 \mathrm{~PB}^{2} & \text { II. } 4, \text { Cor. } 2 . \\
& =2\left(\mathrm{PQ}^{2}-\mathrm{PB}^{2}\right)+4 \mathrm{~PB}^{2} & \text { II. } 6 . \\
& =2 \mathrm{~PB}^{2}+2 \mathrm{PQ}^{2} . &
\end{array}
$$

Proposition 11. Problem.

To divide a given straight line into two parts, so that the rectangle contained by the whole and one part may be equal to the square on the other part.

Let $A B$ be the given straight line.
It is required to divide AB into two parts, so that the rectangle contained by the whole and one part may be equal to the square on the other part.

Construction. On AB describe the square ACDB. I. 46.
Bisect AC at E.
I. 10 . Join EB.
Produce CA to F, making EF equal to EB. I. 3.
On AF describe the square AFGH. I. 46.
Then shall AB be divided at H , so that the rect. AB, BH is equal to the sq. on AH.

Produce GH to meet CD in K.
Proof. Because CA is bisected at E, and produced to F,
\therefore the rect. CF, FA with the sq. on $E A=$ the sq. on $E F$ II. 6.
$=$ the sq. on EB. Constr.
But the sq. on $E B=$ the sum of the sqq. on $E A, A B$, for the angle EAB is a rt. angle. I. 47.
\therefore the rect. CF, FA with the sq. on EA $=$ the sum of the sqq. on EA, AB.

From these equals take the sq. on EA: then the rect. $C F, F A=$ the sq. on $A B$.

But the rect. $C F, F A=$ the fig. $F K$; for $F A=F G$; and the sq. on $A B=$ the fig. $A D$.

From these equals take the common fig. AK ;
then the remaining fig. $\mathrm{FH}=$ the remaining fig. HD .
But the fig. $H D=$ the rect. $A B, B H$; for $B D=A B$; and the fig. FH is the sq. on AH .
\therefore the rect. $A B, B H=$ the sq. on $A H$. Q.E.F.
Definttion. A straight line is said to be divided in Medial Section when the rectangle contained by the given line and one of its segments is equal to the square on the other segment.

The student should observe that this division may be internal or external.

Thus if the straight line $A B$ is divided internally at H, and externally at H^{\prime}, so that
(i) $\mathrm{AB} \cdot \mathrm{BH}=\mathrm{AH}^{2}$,
(ii) $\mathrm{AB} \cdot \mathrm{BH}^{\prime}=\mathrm{AH}^{\prime 2}$,
we shall in either case consider that $A B$ is divided in medial section.
The case of internal section is alone given in Euclid II. 11 ; but a straight line may be divided externally in medial section by a similar process. See Ex. 21, p. 160.

ALGEBRAICAL ILLUSTRATION.

It is required to find a point H in $A B$, or $A B$ produced, such that $A B . B H=A H^{2}$.
Let AB contain a units of length, and let AH contain x units ;

$$
\text { then } \mathrm{BH}=a-x \text { : }
$$

and x must be such that $a(a-x)=x^{2}$,
or
$x^{2}+a x-a^{2}=0$.
Thus the construction for dividing a straight line in medial section corresponds to the solution of this quadratic equation, the two roots of which indicate the internal and external points of division.

EXERCISES.

In the figure of II. 11, shew that
(i) if CH is produced to meet BF at L, CL is at right angles to BF;
(ii) if BE and CH meet at O, AO is at right angles to CH .
(iii) the lines $B G, D F, A K$ are parallel :
(iv) $C F$ is divided in medial section at A.

Proposition 12. Theorem.

In an obtuse-angled triangle, if a perpendicular is drawn from either of the acute angles to the opposite side produced, the square on the side subtending the obtuse angle is greater than the sum of the squares on the sides containing the obtuse angle, by twice the rectangle contained by the side on which, when produced, the perpendicular falls, and the line intercepted without the triangle, between the perpendicular and the obtuse angle.

Let ABC be an obtuse-angled triangle, having the obtuse angle at C; and let $A D$ be drawn from A perp. to the opp. side BC produced.

Then shall tike sq. on AB be greater than the sum of the sqq. on BC, CA, by twice the rect. BC, CD.

Proof. Because BD is divided into two parts at C,
\therefore the sq. on $B D=$ the sum of the sqq. on $B C, C D$, with twice the rect. $B C, C D$.

Then the sqq. on $B D, D A=$ the sum of the sqq. on $B C, C D$, $D A$, with twice the rect. $B C, C D$.
But the sum of the sqq. on $\mathrm{BD}, \mathrm{DA}=$ the sq. on AB , for the angle at D is a rt. angle. I. 47.
Similarly, the sum of the sqq. on $C D, D A=$ the sq. on $C A$.
\therefore the sq. on $A B=$ the sum of the sqq. on $B C, C A$, with twice the rect. $B C, C D$.
That is, the sq. on $A B$ is greater than the sum of the sqq. on $B C, C A$ by twice the rect. $B C, C D$.
Q.E.D.

NOTE ON PROP. 12.
A general definition of the projection of one straight line on another is given on page 105. The student's attention is here called to a special case of projection which will enable us to simplify the Enunciation of Proposition 12.

In the above diagram, $C A$ is a given straight line drawn from a point C in $P Q$; and from A a perpendicular $A D$ is drawn to $P Q$. In this case, $C D$ is said to be the projection of $C A$ on $P Q$.

By applying this definition to the figure of Prop. 12, we see that the statement
The sq. on AB is greater than the sum of the sqq. on BC, CA by twice the rect. BC, CD
is the particular form of the following general Enunciation :
In an obtuse-angled triangle the square on the side opposite the obtuse angle is greater than the sum of the squares on the sides containing the obtuse angle by twice the rectangle contained by one of those sides, and the projection of the other side upon it.

The Enunciation of Prop. 12 thus stated should be carefully compared with that of Prop. 13.

Proposition 13. Theorem.

In every triangle, the square on the side subtending an acute angle is less than the sum of the squares on the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between the perpendicular let fall on it from the opposite angle, and the acute angle.

Let $A B C$ be any triangle having the angle at C an acute angle ; and let $A D$ be the perp. drawn from A to the opp. side $B C$.

Then shall the sq. on AB be less than the sum of the sqq. on BC, CA, by twice the rect. BC, CD.

Proof. Now AD may fall within the triangle ABC, as in fig. 1 , or without it, as in fig. 2.

Because $\left\{\begin{array}{l}\text { in fig. } 1, B C \text { is divided into two parts at } D,\end{array}\right.$ (in fig. 2, DC is divided into two parts at B,

\therefore in both cases

the sum of the sqq. on $B C, C D=$ twice the rect. $B C, C D$ with the sq. on BD.
II. 7.

To each of these equals add the sq. on DA.
Then the sum of the sqq. on $B C, C D, D A=$ twice the rect. $B C, C D$ with the sum of the sqq. on BD, DA.
But the sum of the sqq. on CD, DA = the sq. on CA, I. 47. for the angle $A D C$ is a rt. angle.
Similarly, the sum of the sqq. on $B D, D A=$ the sq. on $A B$.
\therefore the sum of the sqq. on $B C, C A=$ twice the rect. $B C, C D$ with the sq. on $A B$.
That is, the sq. on $A B$ is less than the sum of the sqq. on $B C, C A$ by twice the rect. $B C, C D$.
Q.E.D.
$O b s$. If the perpendicular $A D$ coincides with $A B$, that is, if $A B C$ is a right angle, then twice the rect. $B C, C D$ becomes twice the sq. on BC ; and it may be shewn that the proposition merely repeats the result of I. 47.

NOTES ON PROP. 13.

(i) Remembering the definition of the projection of a straight line given on p. 153, we may enunciate Prop. 13 as follows;

In every triangle, the square on the side subtending an acute angle is less than the sum of the squares on the sides containing that angle, by twice the rectangle, contained by one of these sides and the projection of the other side upon it.
(ii) Comparing the Enunciations of II. 12, I. 47, II. 13, we see that in the triangle $A B C$,
if the angle ACB is obtuse, we have by II. 12,

$$
A B^{2}=B C^{2}+C A^{2}+2 B C \cdot C D
$$

if the angle ACB is a right angle, we have by I. 47,

$$
\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{CA}^{2}
$$

if the angle ACB is acute, we have by II. 13,

$$
A B^{2}=B C^{2}+C A^{2}-2 B C . C D
$$

These results may be collected as follows:
The square on a side of a triangle is greater than, equal to, cr less than the sum of the squares on the other sides, according as the angle opposite to the first is obtuse, a right angle, or acute.

EXERCISES ON II. 12 AND 13.

1. If from one of the base angles of an isosceles triangle a perpendicular is drawn to the opposite side, then twice the rectangle contained by that side and the segment adjacent to the base is equal to the square on the base.
2. If one angle of a triangle is one-third of two right angles, shew that the square on the opposite side is less than the sum of the squares on the sides forming that angle, by the rectangle contained by these two sides.
[See Ex. 10, p. 109.]
3. If one angle of a triangle is two-thirds of two right angles, shew that the square on the opposite side is greater than the sum of the squares on the sides forming that angle, by the rectangle contained by these sides.
[See Ex. 10, p. 109.]

Proposition 14. Problem.

To describe a square that shall be equal to a given rectilineal figure.

Let A be the given rectilineal figure. It is required to describe a square equal to \mathbf{A}.
Construction. Describe a par ${ }^{m}$ BCDE equal to the fig. A, and having the angle CBE a right angle.
I. 45.

Then if $B C=B E$, the fig. $B D$ is a square ; and what was required is done.
But if not, produce $B E$ to F, making $E F$ equal to $E D$; I. 3. and bisect BF at G.
I. 10 .

With centre G, and radius GF, describe the semicircle BHF; produce DE to meet the semicircle at H .
Then shall the sq. on EH be equal to the given fig. A . Join GH.

Proof. Because BF is divided equally at G and unequally at E ,
\therefore the rect. BE, EF with the sq. on GE $=$ the sq. on GF iI. 5 . $=$ the sq. on GH.
But the sq. on $G H=$ the sum of the sqq. on $G E, E H$; for the angle HEG is a rt. angle.
I. 47.
\therefore the rect. BE, EF with the sq. on $\mathrm{GE}=$ the sum of the sqq. on GE, EH.

From these equals take the sq. on GE:
then the rect. $\mathrm{BE}, \mathrm{EF}=$ the sq. on HE .
But the rect. $\mathrm{BE}, \mathrm{EF}=$ the fig. BD ; for $\mathrm{EF}=\mathrm{ED}$; Constr. and the fig. $\mathrm{BD}=$ the given fig. A .
\therefore the sq. on $E H=$ the given fig. A. Q.E.F.

QUESTIONS FOR REVISION ON BOOK II.

1. Explain the phrase, the rectangle contained by $A B, C D$; and shew by superposition that if $A B=P Q$, and $C D=R S$, then the rectangle contained by $\mathrm{AB}, \mathrm{CD}=$ the rectangle contained by PQ, RS.
2. Shew that Prop. 2 is a special case of Prop. 1, explaining under what conditions Prop. 1 becomes identical with Prop. 2.
3. What must be the relation between the divided and undivided lines in the enunciation of Prop. 1 in order to give the result proved in Prop. 3?
4. Define the segments into which a straight line is divided at a point in such a way as to be applicable to the case when the dividing point is in the given line produced.

Hence frame a statement which includes the enunciations of both II. 5 and II. 6, and find the algebraical formulae corresponding to these enunciations.

Also combine in a single enunciation the results of I. 9 and II. 10.
5. Compare the results proved in Propositions 4 and 7 by finding the algebraical formulae corresponding to their enunciations.
6. The difference of the squares on two straight lines is equal to the rectangle contained by their sum and difference. Deduce this theorem from Prop. 5.
7. Define the projection of one straight line on another.

How may the enunciations of II. 12 and II. 13 be simplified by means of this definition?
8. In the figure of Proposition 14,
(i) If $\mathrm{BE}=8$ inches, and $\mathrm{ED}=2$ inches, find the length of EH .
(ii) If $\mathrm{BE}=12.5$ inches, and $\mathrm{EH}=2.5$ inches, find the length of ED.
(iii) If $\mathrm{BE}=9$ inches, and $\mathrm{EH}=3$ inches, find the length of GH .
9. When is a straight line said to be divided in medial section ?

If a straight line 8 inches in length is divided internally in medial section, shew that the lengths of the segments are approximately $4 \cdot 9$ inches and $3 \cdot 1$ inches.
[Frame a quadratic equation as explained on page 151, and solve.]

THEOREMS AND EXAMPLES ON BOOK II.

ON II. 4 AND 7.

1. Shew by II. 4 that the square on a straight line is four times the square on half the line.
[This result is constantly used in solving examples on Book iI., especially those which follow from II. 12 and 13.]
2. If a straight line is divided into any three parts, the square on the whole line is equal to the sum of the squares on the three parts together with twice the rectangles contained by each pair of these parts.

Shew that the algebraical formula corresponding to this theorem is

$$
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 b c+2 c a+2 a b
$$

3. In a right-angled triangle, if a perpendicular is drawn from the right angle to the hypotenuse, the square on this perpendicular is equal to the rectangle contained by the segments of the hypotenuse.
4. In an isosceles triangle, if a perpendicular is drawn from one of the angles at the base to the opposite side, shew that the square on the perpendicular is equal to twice the rectangle contained by the segments of that side together with the square on the segment adjacent to the base.
5. Any rectangle is half the rectangle contained by the diagonals of the squares described upon its two sides.
6. In any triangle if a perpendicular is drawn from the vertical angle to the base, the sum of the squares on the sides forming that angle, together with twice the rectangle contained by the segments of the base, is equal to the square on the base together with twice the square on the perpendicular.

$$
\text { ON II. } 5 \text { AND } 6 .
$$

Obs. The student is reminded that these important propositions are both included in the following enunciation :

The difference of the squares on two straight lines is equal to the rectangle contained by their sum and difference. [See Cor., p. 137].
7. In a right-angled triangle the square on one of the sides forming the right angle is equal to the rectangle contained by the sum and difference of the hypotenuse and the other side. [I. 47 and II. 5 , Cor.]
8. The difference of the squares on two sides of a triangle is equal to twice the rectangle contained by the base and the intercept between the middlle point of the base and the foot of the perpendicular drawn from the vertical angle to the base.

Let $A B C$ be a triangle, and let P be the middle point of the base $B C$: let $A Q$ be drawn perp. to $B C$.

$$
\text { Then shall } A B^{2}-A C^{2}=2 B C . P Q \text {. }
$$

First, let $A Q$ fall within the triangle.

$$
\begin{array}{rlr}
\text { Now } A B^{2} & =\mathrm{BQ}^{2}+Q A^{2}, \\
\text { also } A C^{2} & =\mathrm{QC}^{2}+Q A^{2}, & \text { I. } 47 . \\
\therefore \quad A B^{2}-A C^{2} & =\mathrm{BQ}^{2}-Q \mathrm{C}^{2} & \\
& =(B Q+Q C)(B Q-Q C) \text { II. 5, Cor. } \\
& =B C \cdot 2 P Q & \text { Ex., p. 137. } \\
& =2 B C \cdot P Q & \text { Q.E.D. }
\end{array}
$$

The case in which $A Q$ falls outside the triangle presents no difficulty.
9. The square on any straight line drawn from the vertex of an isosceles triangle to the base is less than the square on one of the equal sides by the rectangle contained by the segments of the base.
10. The square on any straight line drawn from the veriex of an isosceles triangle to the base produced, is greater than the square on one of the equal sides by the rectangle contained by the segments into which the base is divided externally.
11. If a straight line is drawn through one of the angles of an equilateral triangle to meet the opposite side produced, so that the rectangle contained by the segments of the base is equal to the square on the side of the triangle; shew that the square on the line so drawn is double of the square on a side of the triangle.
12. If $X Y$ is drawn parallel to the base $B C$ of an isosceles triangle $A B C$, then the difference of the squares on $B Y$ and $C Y$ is equal to the rectangle contained by $B C, X Y$. [See above, Ex. 8.]
13. In a right-angled triangle, if a perpendicular is drawn from the right angle to the hypotenuse, the square on either side forming the right angle is equal to the rectangle contained by the hypotenuse and the segment of it adjacent to that side.

ON II. 9 AND 10 .

14. Deduce Prop. 9 from Props. 4 and 5, using also the theorem that the square on a straight line is four times the square on half the line.
15. Deduce Prop. 10 from Props. 7 and 6, using also the theorem mentioned in the preceding Exercise.
16. If a straight line is divided equally, and also unequally, the squares on the two unequal segments are together equal to twice the rectangle contained by these segments together with four times the square on the line between the points of section.

ON II. 11.

17. If a straight line is divided internally in medial section, and from the greater segment a part be taken equal to the less, shew that the greater segment is also divided in medial section.
18. If a straight line is divided in medial section, the rectangle contained by the sum and difference of the segments is equal to the rectangle contained by the segments.
19. If $A B$ is divided at H in medial section, and if X is the middle point of the greater segment $A H$, shew that a triangle whose sides are equal to $A H, X H, B X$ respectively must be right-angled.
20. If a straight line $A B$ is divided internally in medial section at H, prove that the sum of the squares on $A B, B H$ is three times the square on AH .
21. Divide a straight line externally in medial section.
[Proceed as in II. 11, but instead of drawing EF, make EF' equal to $E B$ in the direction remote from A; and on $A F^{\prime}$ describe the square $A F^{\prime} G^{\prime} H^{\prime}$ on the side remote from $A B$. Then $A B$ will be divided externally at H^{\prime} as required.]

ON II. 12 AND 13 .

22. In a triangle $A B C$ the angles at B and C are acute: if E and F are the feet of perpendiculars drawn from the opposite angles to the sides $A C, A B$, shew that the square on $B C$ is equal to the sum of the rectangles $A B, B F$ and $A C, C E$.
23. $A B C$ is a triangle right-angled at C, and $D E$ is drawn from a point D in $A C$ perpendicular to $A B$: shew that the rectangle $A B, A E$ is equal to the rectangle $A C, A D$.
24. In any triangle the sum of the squares on two sides is equal to twice the square on half the third side together with twice the square on the median which bisects the third side.

Let $A B C$ be a triangle, and $A P$ the median bisecting the side $B C$.
Then shall $A B^{2}+A C^{2}=2 \mathrm{BP}^{2}+2 A P^{2}$.
Draw $A Q$ perp. to $B C$.
Consider the case in which $A Q$ falls within the triangle, but does not coincide with AP.

Now of the angles APB, APC, one must be obtuse, and the other acute : let APB be obtuse.

Then in the $\triangle A P B, \quad A B^{2}=B P^{2}+A P^{2}+2 B P . P Q, \quad$ II. 12.
Also in the $\triangle A P C, \quad A C^{2}=C P^{2}+A P^{2}-2 C P . P Q$. II. 13. But $C P=B P$,
$\therefore \quad \mathrm{CP}^{2}=\mathrm{BP}^{2}$; and the rect. $\mathrm{BP}, \mathrm{PQ}=$ the rect. CP, PQ, Hence adding the above results,

$$
A B^{2}+A C^{2}=2 \cdot B P^{2}+2 \cdot A P^{2} . \quad \text { Q.E.D. }
$$

The student will have no difficulty in adapting this proof to the cases in which AQ falls without the triangle, or coincides with AP.
25. The sum of the squares on the sides of a parallelogram is equal to the sum of the squares on the diagonals.
26. In any quadrilateral the squares on the diagonals are together equal to twice the sum of the squares on the straight lines joining the middle points of opposite sides.
[See Ex. 9, p. 105.]
27. If from any point within a rectangle straight lines are drawn to the angular points, the sum of the squares on one pair of the lines drawn to opposite angles is equal to the sum of the squares on the other pair.
28. The sum of the squares on the sides of a quadrilateral is greater than the sum of the squares on its diagonals by four times the square on the straight line which joins the middle points of the diagonals.
29. O is the middle point of a given straight line $A B$, and from O as centre, any circle is described: if P be any point on its circumference, shew that the sum of the squares on $A P, B P$ is constant.
30. Given the base of a triangle, and the sum of the squares on the sides forming the vertical angle; find the locus of the vertex.
31. $A B C$ is an isosceles triangle in which $A B$ and $A C$ are equal. $A B$ is produced beyond the base to D, so that $B D$ is equal to $A B$. shew that the square on $C D$ is equal to the square on $A B$ together with twice the square on BC.
32. In a right-angled triangle the sum of the squares on the straight lines drawn from the right angle to the points of trisection of the hypotenuse is equal to five times the square on the line between the points of trisection.
33. Three times the sum of the squares on the sides of a triangle is equal to four times the sum of the squares on the medians.
34. $A B C$ is a triangle, and O the point of intersection of its medians : shew that

$$
A B^{2}+B C^{2}+C A^{2}=3\left(O A^{2}+O B^{2}+O C^{2}\right)
$$

35. $A B C D$ is a quadrilateral, and X the middle point of the straight line joining the bisections of the diagonals; with X as centre any circle is described, and P is any point upon this circle : shew that $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}+\mathrm{PD}^{2}$ is constant, being equal to

$$
X A^{2}+X B^{2}+X C^{2}+X D^{2}+4 X P^{2}
$$

36. The squares on the diagonals of a trapezium are together equal to the sum of the squares on its two oblique sides, with twice the rectangle contained by its parallel sides.

PROBLEMS.

37. Construct a rectangle equal to the difference of two squares.
38. Divide a given straight line into two parts so that the rectangle contained by them may be equal to the square described on a given straight line which is less than half the straight line to be divided.
39. Given a square and one side of a rectangle which is equal to the square, find the other side.
40. Produce a given straight line so that the rectangle contained by the whole line thus produced and the part produced, may be equal to the square on another given line.
41. Produce a given straight line so that the rectangle contained by the whole line thus produced and the given line shall be equal to the square on the part produced.
42. Divide a straight line $A B$ into two parts at C, such that the rectangle contained by $B C$ and another line X may be equal to the square on AC.

BOOK III.

Book III. deals with the properties of Circles.
For convenience of reference the following definitions are repeated from Book I.
I. Def. 15. A circle is a plane figure bounded by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another: this point is called the centre of the circle.

Note. Circles which have the same centre are said to be concentric.
I. Def. 16. A radius of a circle is a straight line drawn from the centre to the circumference.
I. Def. 17. A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
I. Def. 18. A semicircle is the figure bounded by a diameter of a circle and the part of the circumference cut off by the diameter.

Note. From these definitions we draw the following inferences:
(i) The distance of a point from the centre of a circle is less than the radius, if the point is within the circumference : and the distance of a point from the centre is greater than the radius, if the point is without the circumference.
(ii) A point is within a circle if its distance from the centre is less than the radius: and a point is without a circle if its distance from the centre is greater than the radius.
(iii) Circles of equal radius are equal in all respects; that is to say, their areas and circumferences are equal.
(iv) A circle is divided by any diameter into two parts which are equal in all respects.

Definitions to Book III.

1. An arc of a circle is any part of the circumference.
2. A chord of a circle is the straight line which joins any two points on the circumference.

Note. From these definitions it may be seen that a chord of a circle, which does not pass through the centre, divides the circumference into two unequal ares; of these, the greater is called the major arc, and the less the minor arc. Thus the major arc is greater, and the minor arc less than the semi-circumference.

The major and minor arcs, into which a circumference is divided by a chord, are said to be conjugate to one another.
3. Chords of a circle are said to be equidistant from the centre, when the perpendiculars drawn to them from the centre are equal:
and one chord is said to be further from the centre than another, when the perpendicular drawn to it from the centre is greater than the perpendicular drawn to the other.
4. A secant of a circle is a straight line of indefinite length, which cuts the circumference in two points.
5. A tangent to a circle is a straight line which meets the circumference, but being produced, does not cut it. Such a line is said to touch the circle at a point; and the point is called the point of contact.

Note. If a secant, which cuts a circle at the points P and Q , gradually changes its position in such a way that P remains fixed, the point Q will ultimately approach the fixed point P, until at length these points may be made to coincide. When the straight line PQ reaches this limiting position, it becomes the tangent to the circle at the point P.

Hence a tangent may be defined as a straight line which passes through two coin-
 cident points on the circumference.
6. Circles are said to touch one another when they meet, but do not cut one another.

Note. When each of the circles which meet is outside the other, they are said to touch one another externally, or to have external contact: when one of the circles is within the other, the first is said to touch the other internally, or to have internal contact with it.
7. A segment of a circle is the figure bounded by a chord and one of the two ares into which the chord divides the circumference.

Note. The chord of a segment is sometimes called its base.
8. An angle in a segment is one formed by two straight lines drawn from any point in the are of the segment to the extremities of its chord.

Note. (i) It will be shewn in Proposition 21, that all angles in the same segment of a circle are equal.

Note. (ii) The angle of a segment (as distinct from the angle in a segment) is sometimes defined. as that which is contained between the chord and the arc; but this definition is not required in any proposition of Euclid.
9. An angle at the circumference of a circle is one formed by straight lines drawn from a point on the circumference to the extremities of an arc: such an angle is said to stand upon the are by which it is subtended.

10. Similar segments of circles are those which contain equal angles.

11. A sector of a circle is a figure bounded by two radii and the arc intercepted between them.

Symbols and Abbreviations.
In addition to the symbols and abbreviations given on page 11, we shall use the following.
\odot for circle, $\mathrm{O}^{\text {ce }}$ for circumference.

Proposition 1. Problem.

To find the centre of a given circle.

Let $A B C$ be a given circle.
It is required to find the centre of the $\odot \mathrm{ABC}$.
Construction. In the given circle draw any chord $A B$, and bisect $A B$ at D.
I. 10 .

From D draw DC at right angles to $A B$;
I. 11 . and produce DC to meet the O^{∞} at E and C .

Bisect EC at F.
I. 10.

Then shall F be the centre of the $\odot \mathrm{ABC}$.

Proof. First, the centre of the circle must be in EC :
for if not, suppose the centre to be at a point G outside EC.
Join AG, DG, BG.
Then in the \triangle^{8} GDA, GDB,
Because $\left\{\begin{array}{c}\text { and } \mathrm{GD}=\mathrm{DB} \text { is common; } ; \\ \text { and } \mathrm{GA}=\mathrm{GB} \text { for by supposition they are radii ; } \\ \therefore \text { the } \angle \mathrm{GDA}=\text { the } \angle \mathrm{GDB} ;\end{array}\right.$
Because $\left\{\begin{array}{c}\text { and } \mathrm{GD}=\mathrm{DB} \text { is common; } ; \\ \text { and } \mathrm{GA}=\mathrm{GB} \text { for by supposition they are radii ; } \\ \therefore \text { the } \angle \mathrm{GDA}=\text { the } \angle \mathrm{GDB} ;\end{array}\right.$
\therefore these angles, being adjacent, are rt. angles.
But the $\angle C D B$ is a rt. angle ;
Constr.
\therefore the $\angle \mathrm{GDB}=$ the $\angle \mathrm{CDB}$,
$A x .11$.
the part equal to the whole, which is impossible.
$\therefore G$ is not the centre.
So it may be shewn that no point outside EC is the centre ; \therefore the centre lies in EC.
\therefore F, the middle point of the diameter EC, must be the centre of the $\odot A B C$. Q.E.F.
Corollary. The straight line which bisects a chord of a circle at right angles passes through the centre.

Proposition 2. Theorem.

If any two points are taken in the circumference of a circle, the chord which joins them falls within the circle.

Let $A B C$ be a circle, and A and B any two points on its $O^{c e}$.

Then shall the chord AB fall within the circle.
Construction. Find D, the centre of the $\odot A B C$; III. 1. and in $A B$ take any point E.

Join DA, DE, DB.
Proof. In the $\triangle \mathrm{DAB}$, because $\mathrm{DA}=\mathrm{DB}$,
I. Def. 15.
\therefore the $\angle D A B=$ the $\angle D B A$.
I. 5.

But the ext. $\angle D E B$ is greater than the int. opp. $\angle D A E$;
I. 16.
\therefore the $\angle D E B$ is also greater than the $\angle D B E$.
\therefore in the $\triangle D E B$, the side $D B$, which is opposite the greater angle, is greater than DE which is opposite the less : I. 19. that is to say, $D E$ is less than $D B$, a radius of the circle ;
$\therefore E$ falls within the circle.
Similarly, any other point between A and B may be shewn to fall within the circle.
$\therefore A B$ falls within the circle. Q.E.D.
Note. A part of a curved line is said to be concave to a point, when for every chord (taken so as to lie between the point and the curve) all straight lines drawn from the given point to the intercepted are are cut by the chord: if, when any chord whatever is taken, no straight line drawn from the given point to the intercepted are is cut by the chord, the curve is said to be convex to that point.

Proposition 2 proves that the whole circumference of a circle is concave to its centre.

Proposition 3. Theorem.

If a straight line drawn through the centre of a circle bisects a chord which does not pass through the centre, it shall cut the chord at right angles.

Conversely, if it cuts the chord at right angles, it shall bisect it.

Let $A B C$ be a circle; and let CD be a st. line drawn through the centre, and $A B$ a chord which does not pass through the centre.

First. Let $C D$ bisect the chord $A B$ at F. Then shall CD cut AB at rt. angles.
Construction. Find E the centre of the circle ; III. 1. and join EA, EB.
Proof.
Because $\left\{\begin{array}{c}A F=B F, \\ \text { and } F E \text { is common ; } \\ \text { and } A E=B E, \text { being radii of the circle ; }\end{array}\right.$ \therefore the $\angle A F E=$ the $\angle B F E$;

Hyp.
I. 8 .
\therefore these angles, being adjacent, are rt. angles ; that is, $D C$ cuts $A B$ at rt. angles. Q.E.D.
Conversely. Let $C D$ cut the chord $A B$ at rt. angles. Then shall CD bisect AB at F .
Construction. Find E the centre ; and join EA, EB.
Proof. In the $\triangle E A B$, because $E A=E B$, I. Def. 15. \therefore the $\angle E A B=$ the $\angle E B A$. I. 5. Then in the $\triangle^{8} E F A, E F B$,
Because $\left\{\begin{array}{c}\text { the } \angle E A F=\text { the } \angle E B F, \\ \text { Proved. } \\ \text { and the } \angle E F A=\text { the } \angle E F B, \text { being rt. angles; Hyp. } \\ \text { and } \mathrm{EF} \text { is common; }\end{array}\right.$

$$
\therefore A F=B F ;
$$

I. 26.
that is, $C D$ bisects $A B$ at F.
Q.E.D.

Proposition 4. Theorem.

If in a circle two chords cut one another, which do not both pass through the centre, they cannot both be bisected at their point of intersection.

Let $A B C D$ be a circle, and $A C, B D$ two chords which intersect at E , but do not both pass through the centre.

Then AC and BD shall not be both bisected at E .
Case I. If one chord passes through the centre, it is a diameter, and the centre is its middle point;
\therefore it cannot be bisected by the other chord, which by hypothesis does not pass through the centre.

Case II. If neither chord passes through the centre ; then, if possible, suppose E to be the middle point of both; that is, let $A E=E C$; and $B E=E D$.

Construction. Find F, the centre of the circle. III. 1. Join EF.

Proof. Because FE, which passes through the centre, bisects the chord AC,

Hyp.
\therefore the \angle FEC is a rt. angle. III. 3.
And because FE , which passes through the centre, bisects the chord BD,

Нур.
\therefore the \angle FED is a rt. angle. III. 3 .
\therefore the $\angle \mathrm{FEC}=$ the $\angle \mathrm{FED}$,
the whole equal to its part, which is impossible.
$\therefore A C$ and $B D$ are not both bisected at E. Q.E.D.

EXERCISES.

on Proposition 1.

1. If two circles intersect at the points A, B, shew that the line which joins their centres bisects their common chord $A B$ at right angles.
2. $A B, A C$ are two equal chords of a circle ; shew that the straight line which bisects the angle BAC passes through the centre.
3. Two chords of a circle are given in position and magnitude: find the centre of the circle.
4. Describe a circle that shall pass through three given points, which are not in the same straight line.
5. Find the locus of the centres of circles which pass through two given points.
6. Describe a circle that shall pass through two given points, and have a given radius. When is this impossible?

on Proposition 2.

7. A straight line cannot cut a circle in more than two points.

on Proposition 3.

8. Through a given point within a circle draw a chord which shall be bisected at that point.
9. The parts of a straight line intercepted between the circumferences of two concentric circles are equal.
10. The line joining the middle points of two parallel chords of a circle passes through the centre.
11. Find the locus of the middle points of a system of parallel chords drawn in a circle.
12. If two circles cut one another, any two parallel straight lines drawn through the points of intersection to cut the circles, are equal.
13. $P Q$ and $X Y$ are two parallel chords in a circle : shew that the points of intersection of PX, QY, and of PY, QX, lie on the straight line which passes through the middle points of the given chords.

Proposition 5. Theorem.

If two circles cut one another, they cannot have the same centre.

Let the two \odot^{8} AGC, BFC cut one another at C .
Then they shall not have the same centre.
Construction. If possible, let the two circles have the same centre ; and let it be called E.

Join EC ;
and from E draw any st. line to meet the $O^{\text {ces }}$ at F and G.
Proof. Because \mathbf{E} is the centre of the \odot AGC, Hyp.

$$
\therefore E G=E C .
$$

And because E is also the centre of the $\odot \mathrm{BFC}$, Hyp.

$$
\begin{aligned}
& \therefore E F=E C . \\
& \therefore E G=E F,
\end{aligned}
$$

the whole equal to its part, which is impossible. Therefore the two circles have not the same centre.

Q.E.D.

EXERCISES.

on Propositions 4 and 5.

1. If a parallelogram can be inscribed in a circle, the point of intersection of its diagonals must be at the centre of the circle.
2. Rectangles are the only parallelograms that can be inscribed in a circle.
3. Two circles, which intersect at one point, must also intersect at another.

Proposition 6. Theorem.

If two circles touch one another internally, they cannot have the same centre.

Let the two $\odot^{s} \mathrm{ABC}, \mathrm{DEC}$ touch one another internally at \mathbf{C}.

Then they shall not have the same centre.
Construction. If possible, let the two circles have the same centre ; and let it be called F.

Join FC;
and from F draw any st, line to meet the $\mathrm{O}^{\text {ces }}$ at E and B .
Proof. Because F is the centre of the $\odot \mathrm{ABC}, \quad$ Hyp. $\therefore \mathrm{FB}=\mathrm{FC}$.
And because F is the centre of the \odot DEC, Hyp. $\therefore F E=F C$.

$$
\therefore F B=F E,
$$

the whole equal to its part, which is impossible.
Therefore the two circles have not the same centre.

> Q.E.D.

Note. From Propositions 5 and 6 it is seen that circles, whose circumferences have any point in common, cannot be concentric, unless they coincide entirely.

Conversely, the circumferences of concentric circles can have no point in common.

Proposition 7. Theorem.

If from any point within a circle which is not the centre, straight lines are drawn to the circumference, then the greatest is that which passes through the centre; and the least is the remaining part of the diameter.

And of all other such lines, that which is nearer to the greatest is always greater than one more remote.

And two equal straight lines, and only two, can be drawn from the given point to the circumference, one on each side of the diameter.

Let $A B C D$ be a circle, and from F, any point within it which is not the centre, let FA, FB, FC, FG, and FD be drawn to the $O^{\text {ce }}$, of which FA passes through E the centre, and $F D$ is the remaining part of the diameter.

Then of all these st. lines,
(i) FA shall be the greatest ;
(ii) FD shall be the least;
(iii) FB , which is nearer to FA , shall be greater than FC , which is more remote;
(iv) also two, and only two, equal st. lines can be drawn from F to the $\mathrm{O}^{\text {e. }}$.
Construction. Join EB, EC.
Proof. (i) In the $\triangle F E B$, the two sides $F E, E B$ are together greater than the third side FB.
I. 20.

But $E B=E A$, being radii of the circle ;
\therefore FE, EA are together greater than FB; that is, FA is greater than FB.

Similarly FA may be shewn to be greater than any other st. line drawn from F to the O^{∞};
$\therefore F A$ is the greatest of all such lines.
(ii) In the $\triangle E F G$, the two sides $E F, F G$ are together greater than EG;
I. 20 .
and $E G=E D$, being radii of the circle;
$\therefore E F, F G$ are together greater than ED.
Take away the common part EF;
then FG is greater than FD.
Similarly any other st. line drawn from F to the $O^{\text {ce }}$ may be shewn to be greater than FD;
\therefore FD is the least of all such lines.

Because $\left\{\begin{array}{c}B E=C E, \\ \text { and } E F \text { is common ; Def. 15. } \\ \text { but the } \angle B E F \text { is greater than the } \angle C E F ;\end{array}\right.$
$\therefore \mathrm{FB}$ is greater than FC.
I. 24.

Similarly it may be shewn that FC is greater than FG.
(iv) Join EG, and at E in $F E$ make the $\angle F E H$ equal to the \angle FEG.
I. 23.

Join FH.

Then in the \triangle° GEF, HEF,
Because $\left\{\begin{array}{cr}\mathrm{GE}=\mathrm{HE}, & \text { I. Def. } 15 . \\ \text { and } \mathrm{EF} \text { is common; } \\ \text { also the } \angle \mathrm{GEF}=\text { the } \angle \mathrm{HEF} ; & \text { Constr. } \\ \therefore \mathrm{FG}=\mathrm{FH} . & \text { I. } 4 .\end{array}\right.$
And besides FH no other straight line can be drawn from F to the $O^{c e}$ equal to $F G$.

For, if possible, let $F K=F G$.
Then, because FH = FG, Proved.

$$
\therefore F K=F H \text {, }
$$

that is, a line nearer to FA, the greatest, is equal to a line
which is more remote ; which is impossible. Proved.
Therefore two, and only two, equal st. lines can be drawn from F to the O^{∞}.
Q.E.D.

Proposition 8. Theorem.

If from any point without a circle straight lines are drawn to the circumference, of those which fall on the concave circumference, the greatest is that which passes through the centre; and of others, that which is nearer to the greatest is always greater than one more remote.

Of those which fall on the convex circumference, the least is that which, when produced, passes through the centre; and of others, that which is nearer to the least is always less than one more remote.

From the given point there can be drawn to the circumference two, and only two, equal straight lines, one on each side of the shortest line.

Let BGD be a circle; and from A, any point outside the circle, let ABD, AEH, AFG, be drawn, of which AD passes through C, the centre, and $A H$ is nearer than AG to AD.

Then of st. lines drawn from \mathbf{A} to the concave $\mathrm{O}^{c e}$,
(i) AD shall be the greatest, and (ii) AH greater than AG.

And of st. lines drawn from A to the convex $\mathrm{O}^{\text {ce }}$,
(iii) AB shall be the least, and (iv) AE less than AF .
(v) Also two, and only two, equal st. lines can be drawn from A to the $\mathrm{O}^{\text {ce. }}$.

Construction. Join CH, CG, CF, CE.
Proof. (i) In the $\triangle A C H$, the two sides $A C, C H$ are together greater than AH :
I. 20.
but $\mathrm{CH}=\mathrm{CD}$, being radii of the circle ;
$\therefore A C, C D$ are together greater than $A H$: that is, $A D$ is greater than AH.
Similarly AD may be shewn to be greater than any other st. line drawn from A to the concave $O^{\text {ce }}$;
$\therefore A D$ is the greatest of all such lines.

In the $\triangle^{*} H C A, G C A$,
Because $\left\{\begin{array}{cc}H C=G C, \\ \text { and } C A \text { is common ; } & \text { I. Def. } 15 . \\ \text { but the } \angle H C A \text { is greater than the } \angle \mathrm{GCA} ; \\ \therefore A H \text { is greater than } A G . & \text { I. } 24 .\end{array}\right.$
(iii) In the $\triangle A E C$, the two sides $A E, E C$ are together greater than $A C$;
I. 20 .

$$
\text { but } \mathrm{EC}=\mathrm{BC} ; \quad \text { I. Def. } 15 .
$$

\therefore the remainder $A E$ is greater than the remainder $A B$.
Similarly any other st. line drawn from A to the convex $O^{\text {ce }}$ may be shewn to be greater than $A B$;
$\therefore A B$ is the least of all such lines.
(iv) In the $\triangle A F C$, because $A E, E C$ are drawn from the extremities of the base to a point E within the triangle, $\therefore A F, F C$ are together greater than $A E, E C$. I. 21.

$$
\text { But } \mathrm{FC}=\mathrm{EC} ; \quad \text { I. Def. } 15 .
$$

\therefore the remainder $A F$ is greater than the remainder $A E$.
(v) At C, in AC, make the $\angle A C M$ equal to the $\angle A C E$. Join AM.
Then in the two \triangle^{s} ECA, MCA,
Because $\left\{\begin{array}{rr}E C=M C, & \text { I. Def. } 15 . \\ \text { and } C A \text { is common; } \\ \text { also the } \angle E C A=\text { the } \angle M C A ; & \text { Constr. } \\ \therefore A E=A M . & \text { I. } 4 .\end{array}\right.$
And besides AM, no st. line can be drawn from A to the $O^{c e}$, equal to $A E$.

For, if possible, let $A K=A E$:
then because $A M=A E, \quad$ Proved.

$$
\therefore \quad A M=A K
$$

that is, a line nearer to $A B$, the shortest line, is equal to a line which is more remote; which is impossible. Proved.

Therefore two, and only two, equal st. lines can be drawn from A to the $O^{\text {ce }}$. Q.E.D.

Exercise. Where are the limits of that part of the circumference which is concave to the point A ?
H.S.E.

Proposition 9. Theorem. [First Proof.]

If from a point within a circle more than two equal straight lines can be drawn to the circumference, that point is the centre of the circle.

Let $A B C$ be a circle, and D a point within it, from which more than two equal st. lines are drawn to the $O^{\text {ce }}$, namely DA, DB, DC.

Then D shall be the centre of the circle ABC .
Construction. Join AB, BC :
and bisect $A B, B C$ at E and F respectively. I. 10 . Join DE, DF.

Proof. In the \triangle^{s} DEA, DEB, Because $\left\{\begin{array}{lr}E A=E B, & \text { Constr. } \\ \text { and } D E \text { is common; } \\ \text { and } D A=D B ; & \text { Hyp. }\end{array}\right.$ \therefore the $\angle D E A=$ the $\angle D E B ; \quad$ I. 8 .
\therefore these angles, being adjacent, are rt. angles.
Hence ED, which bisects the chord AB at rt. angles, must pass through the centre.
III. 1. Cor.

Similarly it may be shewn that FD passes through the centre.
\therefore D, which is the only point common to ED and FD, mast be the centre.
Q.E.D.

Note. Of the two proofs of this proposition given by Euclid the first has the advantage of being direct.

Proposition 9. Theorem. [SEcond Proof.]

If from a point within a circle more than two equal straight lines can be draun to the circumference, that point is the centre of the circle.

Let $A B C$ be a circle, and D a point within it, from which more than two equal st. lines are drawn to the $O^{\text {ce }}$, namely DA, DB, DC.

Then D shall be the centre of the circle ABC .
Construction. For if not, suppose, if possible, E to be the centre.

Join DE, and produce it to meet the $O^{\text {ce }}$ at F, G.
Proof. Because D is a point within the circle, not the centre, and because DF passes through the centre E;
$\therefore D A$, which is nearer to DF, is greater than $D B$, which is more remote :
III. 7.
but this is impossible, since by hypothesis, DA, DB, are equal.
$\therefore E$ is not the centre of the circle.

* And wherever we suppose the centre E to be, otherwise than at D, two at least of the st. lines DA, DB, DC may be shewn to be unequal, which is contrary to hypothesis.

$$
\therefore D \text { is the centre of the } \odot A B C . \quad \text { Q.E.D. }
$$

* Note. For example, if the centre E were supposed to be within the angle $B D C$, then $D B$ would be greater than $D A$; if within the angle $A D B$, then $D B$ would be greater than $D C$; if on one of the ihree straight lines, as $D B$, then $D B$ would be greater than both DA and DC.

Proposition 10. Theorem. [First Proof.]

One circle cannot cut another at more than two points.

If possible, let DABC, EABC be two circles, cutting one another at more than two points, namely at A, B, C.

Construction. Join AB, BC.
Draw FH, bisecting AB at rt. angles ; I. 10, 11. and draw $G H$ bisecting $B C$ at rt. angles.

Proof. Because AB is a chord of both circles, and because $F H$ bisects $A B$ at rt. angles,
\therefore the centre of both circles lies in FH. III. 1. Cor.
Again, because BC is a chord of both circles, and because GH bisects BC at right angles,
\therefore the centre of both circles lies in GH. III. 1. Cor.
Hence H , the only point common to FH and GH, is the centre of both circles;
which is impossible, for circles which cut one another cannot have a common centre.
III. 5 .

Therefore one circle cannot cut another at more than two points. Q.E.D.

Corollaries. (i) Two circles cannot have three points in common without coinciding entirely.
(ii) Two circles cannot have a common arc without coinciding entirely.
(iii) Only one circle can be described through three points, which are not in the same straight line.

Proposition 10. Theorem. [Second Proof.]

One circle cannot cut another at more than two points.

If possible, let DABC, EABC be two circles, cutting one another at more than two points, namely at A, B, C.

Construction. Find H, the centre of the \odot DABC, III. 1. and join $H A, H B, H C$.

Proof. Since H is the centre of the \odot DABC, HA, HB, HC are all equal. I. Def. 15.
And because H is a point within the $\odot E A B C$, from which more than two equal st. lines, namely $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$ are drawn to the $\mathrm{O}^{\text {ce, }}$,
$\therefore H$ is the centre of the \odot EABC :
III. 9.
that is to say, the two circles have a common centre H ;
but this is impossible, since they cut one another. III. 5.
Therefore one circle cannot cut another in more than two points.
Q.E.D.

Note. Both the proofs of Proposition 10 given by Euclid are indirect.

The second of these is imperfect, because it assumes that the centre of the circle DABC must fall within the circle EABC; whereas it may be conceived to fall either without the circle EABC, or on its circumference. Hence to make the proof complete, two additional cases are required.

Proposition 11. Theorem.

If two circles touch one another internally, the straight line which joins their centres, being produced, shall pass through the point of contact.

Let $A B C$ and $A D E$ be two circles which touch one another internally at A; let F be the centre of the $\odot A B C$, and G the centre of the \odot ADE.

Then shall FG produced pass through A.
Construction. For if not, suppose, if possible, FG to pass otherwise, as FGEH.

Join FA, GA.

Proof. In the $\triangle F G A$, the two sides $F G, G A$ are together greater than FA :
I. 20.
but $\mathrm{FA}=\mathrm{FH}$, being radii of the $\odot \mathrm{ABC}$: Hyp.
FG, GA are together greater than FH .
Take away the common part FG: then GA is greater than GH.
But GA $=\mathrm{GE}$, being radii of the $\odot \mathrm{ADE}: H y p$.
\therefore GE is greater than GH,
the part greater than the whole; which is impossible.
\therefore FG, when produced, must pass through A.
Q.E.D.

EXERCISES.

1. If the distance between the centres of two circles is equal to the difference of their radii, then the circles must meet in one point, but in no other ; that is, they must touch one another.
2. If two circles whose centres are A and B touch one another internally, and a straight line is drawn through their point of contact, cutting the circumferences at P and Q ; shew that the radii AP and BQ are parallel.

Proposition 12. Theorem.

If two circles touch one another externally, the straight line which joins their centres shall pass through the point of contact.

Let $A B C$ and $A D E$ be two circles which touch one another externally at A; let F be the centre of the $\odot A B C$, and G the centre of the \odot ADE.

Then shall FG pass through A.
Construction. For if not, suppose, if possible, FG to pass otherwise, as FHKG.

Join FA, GA.

Proof. In the $\triangle F A G$, the two sides $F A, G A$ are together greater than FG :
\therefore FH and GK are together greater than FG;
which is impossible.
\therefore FG must pass through A.

> Q.E.D.

EXERCISES.

1. Find the locus of the centres of all circles which touch a given circle at a given point.
2. Find the locus of the centres of all circles of given radius, which touch a given circle.
3. If the distance between the centres of two circles is equal to the sum of their radii, then the circles meet in one point, but in no other ; that is, they touch one another.
4. If two circles whose centres are A and B touch one another externally, and a straight line is drawn through their point of contact cutting the circumferences at P and Q ; shew that the radii AP and BQ are parallel.

Proposition 13. Theorem.

Two circles cannot touch one another at more than one point, whether internally or externally.

Fig. 1.

Fig. 2.

If possible, let ABC, EDF be two circles which touch one another at more than one point, namely at B and D.

Construction. Join BD;
and draw GF, bisecting BD at rt. angles. I. 10, 11.
Proof. Now, whether the circles touch one another internally, as in Fig 1 or externally as in Fig 2,
berause B and D are on the $O^{\text {ces }}$ of both circles,
$\therefore B D$ is a chord of both circles:
\therefore the centres of both circles lie in GF, which bisects BD at rt. angles. iII. 1. Cor.

Hence GF which joins the centres must pass through a point of contact ; III. 11, and 12.
which is impossible, since B and D are outside GF.
Therefore two circles cannot touch one another at more than one point.
Q.E.D.

Note. It must be observed that the proof here given applies, by virtue of Propositions 11 and 12, to both the above figures: we have therefore omitted the separate discussion of Fig. 2, which finds a place in most editions based on Simson's text.

EXERCISES ON PROPOSITIONS 1-13.

1. Describe a circle to pass through two given points and have its centre on a given straight line. When is this impossible ?
2. All circles which pass through a fixed point, and have their centres on a given straight line, pass also through a second fixed point.
3. Describe a circle of given radius to touch a given circle at a given point. How many solutions will there be? When will there be only one solution?
4. From a given point as centre describe a circle to touch a given circle. How many solutions will there be?
5. Describe a circle to pass through a given point, and touch a given circle at a given point. [See Ex. 1, p. 183, and Ex. 5, p. 171.] When is this impossible?
6. Describe a circle of given radius to touch two given circles. [See Ex. 2, p. 183.] How many solutions will there be?
7. Two parallel chords of a circle are six inches and eight inches in length respectively, and the perpendicular distance between them is one inch : find the radius.
8. If two circles touch one another externally, the straight lines, which join the extremities of parallel diameters towards opposite parts, must pass through the point oî contact.
9. Find the greatest and least straight lines which have one extremity on each of two given circles, which do not intersect.
10. In any segment of a circle, of all straight lines drawn at right angles to the chord and intercepted between the chord and the are, the greatest is that which passes through the middle point of the chord; and of others that which is nearer the greatest is greater than one more remote.
11. If from any point on the circumference of a circle straight lines be drawn to the circumference, the greatest is that which passes through the centre; and of others, that which is nearer to the greatest is greater than one more remote; and from this point there can be drawn to the circumference two, and only two, equal straight lines.

Proposition 14. Theorem.

Equal chords in a circle are equidistant from the centre.
Conversely, chords which are equidistant from the centre are equal.

Let $A B C$ be a circle, and let $A B$ and $C D$ be chords, of which the perp. distances from the centre are EF and EG.

First. Let $\mathrm{AB}=\mathrm{CD}$.
Then shall $\mathbf{A B}$ and CD be equidistant from the centre \mathbf{E}.
Construction. Join EA, EC.
Proof. Because EF, which passes through the centre, is perp. to the chord $A B$;

\therefore EF bisects $A B$;

$\therefore A B$ is double of $F A$.
For a similar reason, $C D$ is double of GC.

$$
\begin{aligned}
B u t A B & =C D, \\
\therefore \quad F A & =G C .
\end{aligned}
$$

Now $E A=E C$, being radii of the circle ;
\therefore the sq. on $E A=$ the sq. on $E C$.
But since the $\angle E F A$ is a rt. angle :
\therefore the sq. on $E A=$ the sqq. on EF, FA. I. 47.
And since the $\angle E G C$ is a rt. angle ;
\therefore the sq. on $E C=$ the sqq. on $E G, G C$.
\therefore the sqq. on $E F, F A=$ the sqq. on $E G, G C$.
Now of these, the sq. on $F A=$ the sq. on $G C$; for $F A=G C$.
\therefore the sq. on $E F=$ the sq. on $E G$;

$$
\therefore E F=E G ;
$$

that is, the chords $A B, C D$ are equidistant from the centre. Q.E.D.

Conversely. Let $A B$ and $C D$ be equidistant from the centre E;

$$
\begin{aligned}
& \text { that is, let } \mathrm{EF}=\mathrm{EG} \text {. } \\
& \text { Then shall } \mathrm{AB}=\mathrm{CD} \text {. }
\end{aligned}
$$

Proof. The same construction being made, it may be shewn as before that $A B$ is double of $F A$, and $C D$ double of GC ;
and that the sqq. on $E F, F A=$ the sqq. on $E G$, $G C$.
Now of these, the sq. on $E F=$ the sq. on $E G$, for $E F=E G$:

Hyp.
\therefore the sq. on $F A=$ the sq. on GC ; $\therefore F A=G C$;
and doubles of these equals are equal ; $A x .6$. that is, $A B=C D$.
Q.E.D.

EXERCISES.

1. Find the locus of the middle points of equal chords of a circle.
2. If two chords of a circle cut one another, and make equal angles with the straight line which joins their point of intersection to the centre, they are equal.
3. If two equal chords of a circle intersect, shew that the segments of the one are equal respectively to the segments of the other.
4. In a given circle draw a chord which shall be equal to one given straight line (not greater than the diameter) and parallel to another.
5. $P Q$ is a fixed chord in a circle, and $A B$ is any diameter : shew that the sum or difference of the perpendiculars let fall from A and B on PQ is constant, that is, the same for all positions of $A B$.

Proposition 15. Theorem.

The diameter is the greatest chord in a circle ;
and of other chords, that which is nearer to the centre is greater than one more remote.

Conversely, the greater chord is nearer to the centre than the less.

Let $A B C D$ be a circle of which $A D$ is a diameter, and E the centre ; and let $B C$ and $F G$ be any two chords, whose perp. distances from the centre are EH and EK.
Then (i) AD shall be greater than BC;
(ii) if EH is less than EK, BC shall be greater than FG :
(iii) if BC is greater than FG, EH shall be less than EK .
(i) Construction. Join EB, EC.

Proof. In the $\triangle B E C$, the two sides $B E, E C$ are together greater than $B C$; I. 20.

$$
\begin{aligned}
& \text { but } B E=A E \text {, } \\
& \text { and } E C=E D \text {; }
\end{aligned}
$$

$$
\text { I. Def. } 15 .
$$

$\therefore A E$ and $E D$ together are greater than $B C$; that is, $A D$ is greater than $B C$.
Similarly AD may be shewn to be greater than any other chord, not a diameter.

Let EH be less than EK.
Then BC shall be greater than FG.
Construction. Join EF.
Proof. Since EH, passing through the centre, is perp. to the chord BC ,
\therefore EH bisects BC ;
III. 3.
$\therefore B C$ is double of HB.
For a similar reason FG is double of KF .

$$
\text { Now } \mathrm{EB}=\mathrm{EF} \text {, }
$$

I. Def. 15.
\therefore the sq. on $E B=$ the sq. on $E F$.
But since the $\angle E H B$ is a rt. angle,
\therefore the sq. on $E B=$ the sqq. on $E H, H B$. I. 47.
And since the $\angle E K F$ is a rt. angle,
\therefore the sq on $E F=$ the sqq. on $E K, K F$;
\therefore the sqq. on $E H, H B=$ the sqq. on $E K, K F$.
But the sq. on EH is less than the sq. on EK, for $E H$ is less than EK;

Нyp.
\therefore the sq. on HB is greater than the sq. on KF ;
$\therefore H B$ is greater than KF:
hence $B C$ is greater than $F G$.
(iii) Conversely. Let BC be greater than FG .

Then EH shall be less than EK.
Proof. The same construction being made, it may be shewn as before that $B C$ is double of $B H$. and $F G$ double of FK ; and that the sqq. on $E H, H B=$ the sqq. on $E K, K F$.

But since BC is greater than FG , Hyp.
$\therefore \mathrm{HB}$ is greater than KF;
\therefore the sq. on HB is greater than the sq on KF.
\therefore the sq. on EH is less than the sq. on EK;
\therefore EH is less than EK.
Q.E.D.

EXERCISES.

1. Through a given point within a circle draw the least possible chord.
2. $A B$ is a fixed chord of a circle, and $X Y$ any other chord having its middle point Z on $A B$; what is the greatest, and what the least length that $X Y$ may have?

Shew that $X Y$ increases, as Z approaches the middle point of $A B$.
3. In a given circle draw a chord of given length, having its middle point on a given chord.

When is this problem impossible?

Proposition 16. Theorem. [Alternative Proof.]
The straight line drawn at right angles to a diameter of a circle at one of its extremities is a tangent to the circle:
and every other straight line drawn through this point cuts the circle.

Let $A K B$ be a circle, of which E is the centre, and $A B$ a diameter; and through B let the st. line CBD be drawn at rt. angles to $A B$.

Then (i) CBD shall be a tangent to the circle;
(ii) any other st. line through B , such as BF , shall cut the circle.
(i) Construction. In CD take any point G, and join EG.

Proof. In the $\triangle E B G$, the $\angle E B G$ is a rt. angle ; Hyp. \therefore the $\angle E G B$ is less than a rt. angle;
I. 17.
\therefore the $\angle E B G$ is greater than the $\angle E G B$; \therefore EG is greater than EB:
I. 19.
that is, EG is greater than a radius of the circle ;
\therefore the point G is without the circle.
Similarly any other point in CD, except B, may be shewn to be outside the circle.

Hence CD meets the circle at B, but being produced, does not cut it ;
that is, CD is a tangent to the circle. III. Def. 5.
(ii) Construction. Draw EH perp. to BF .
I. 12.

Proof. In the $\triangle E H B$, because the $\angle E H B$ is a rt. angle, \therefore the $\angle E B H$ is less than a rt. angle; I. 17.
$\therefore E B$ is greater than $E H$; I. 19.
that is, EH is less than a radius of the circle :
$\therefore H$, a point in $B F$, is within the circle ;

$$
\therefore \text { BF must cut the circle. Q.E.D. }
$$

Note. The above proof of Proposition 16 is not that given by Euclid, but it is preferable as being direct. Euclid's proof by Reductio ad Absurdum is given below.

Proposition 16. Theorem. [Euclid's Proof.]

The straight line drawn at right angles to a diameter of a circle at one of its extremities, is a tangent to the circle:
and no other straight line can be drawn through this point so as not to cut the circle.

Let $A B C$ be a circle, of which D is the centre, and $A B$ diameter; let $A E$ be drawn at rt. angles to BA, at its extremity A.
(i) Then shall AE be a tangent to the circle.

Construction.
For, if possible, suppose $A E$ to cut the circle at C. Join DC.

Proof. Then in the $\triangle D A C$, because $D A=D C, \quad$ I. Def. 15. \therefore the $\angle D A C=$ the $\angle D C A$.
But the $\angle D A C$ is a rt. angle; Hyp.
\therefore the $\angle D C A$ is a rt. angle;
that is, two angles of the $\triangle D A C$ are together equal to two rt. angles; which is impossible.
I. 17.

Hence AE meets the circle at A, but being produced, does not cut it;
that is, $A E$ is a tangent to the circle. - iII. Def. 5.
(ii) Also through A no other straight line but AE can be drawn 80 as not to cut the circle.

Construction. For, if possible, let AF be another st. line drawn through A so as not to cut the circle.

$$
\begin{array}{ll}
\text { From D draw DG perp. to AF ; } & \text { I. } 12 . \\
\text { and let DG meet the } O^{c e} \text { at } H . &
\end{array}
$$

Proof. Then in the $\triangle D A G$, because the $\angle D G A$ is a rt. angle, \therefore the $\angle D A G$ is less than a rt. angle ; I. 17.
\therefore DA is greater than DG.
I. 19.

But DA $=\mathrm{DH}$,
I. Def. 15.
$\therefore D H$ is greater than DG,
the part greater than the whole, which is impossible.
Therefore no st. line can be drawn from the point A, so as not to cut the circle, except AE.

Corollary. (i) A tangent touches a circle at one point only.
Corollary. (ii) There can be but one tangent to a circle at x given point.

Proposition 17. Problem.

To draw a tangent to a circle from a given point either on, or without the circumference.

Fig. I.

Fig. 2.

Let $B C D$ be the given circle, and A the given point.
It is required to draw from \mathbf{A} a tangent to the $\odot \mathrm{CDB}$.
Case I. When the given point A is on the $O^{c e}$.
Construction. Find E, the centre of the circle. III. 1. Join EA
At A draw AK at rt. angles to EA.
I. 11 .

Proof. Then AK being perp to a diameter at one of its extremities, is a tangent to the circle.
III. 16.

Case II. When the given point A is without the $O^{c e}$.
Construction. Find \mathbf{E}, the centre of the circle ; III. 1. and join $A E$, cutting the $\odot B C D$ at D.
With centre E and radius EA, describe the \odot AFG.
At D, draw GDF at rt. angles to EA, cutting the \odot AFG at F and G.
I. 11.

Join EF, EG, cutting the \odot BCD at B and C. Join AB, AC.
Then both AB and AC shall be tangents to the $\odot \mathrm{CDB}$.
Proof. In the $\triangle^{B} A E B, F E D$,
Because $\left\{\begin{array}{l}A E=F E, \text { being radii of the } \odot G A F ; \\ \text { and } E B=E D, \text { being radii of the } \odot \mathrm{BDC} \\ \text { and the included angle } A E F \text { is common; }\end{array}\right.$ \therefore the $\angle \mathrm{ABE}=$ the $\angle \mathrm{FDE}$.
I. 4. н.s.E.

But the $\angle F D E$ is a rt. angle ;
Constr. \therefore the $\angle A B E$ is a rt. angle.
Hence $A B$, being drawn at rt. angles to a diameter at one of its extremities, is a tangent to the $\odot B C D$.
III. 16.

Similarly it may be shewn that AC is a tangent. Q.E.F.

Corollary. If two tangents are drawn to a circle from an external point, then (i) they are equal; (ii) they subtend equal angles at the centre; (iii) they make equal angles with the straight line which joins the given point to the centre.

For, in the above figure,
Since ED is perp. to FG, a chord of the \odot FAG, Constr.

$$
\therefore \mathrm{DF}=\mathrm{DG} \text {. }
$$

III. 3.

Then in the $\triangle^{8} D E F, D E G$,

I. Def. 15. Proved.
I. 8 .

$$
\therefore \text { the } \angle D E F=\text { the } \angle D E G .
$$

$$
\text { Because }\left\{\begin{array}{rr}
A E \text { is common to both, } \\
\text { and } E B=E C, & \text { Proved. } \\
\text { and the } \angle A E B=\text { the } \angle A E C ; & \text { I. } 4 . \\
\text { and the } \angle E A B=A C: & \text { the } \angle E A C .
\end{array}\right.
$$

Note. If the given point A is within the circle, no solution is possible. Hence we see that this problem admits of two solutions, one solution, or no solution, according as the given point A is without, on, or within the circumference of a circle. For a simpler method of drawing a tangent to a circle from a given point, see page 218.

Proposition 18. Theorem.

The straight line drawn from the centre of a circle to the point of contact of a tungent is perpendicular to the tangent.

Let $A B C$ be a circle, of which F is the centre ; and let the st. line $D E$ touch the circle at C.

Then shall FC be perp. to DE .
For, if not, suppose, if possible, FG to be perp. to DE, I. 12. and let FG meet the $\mathrm{O}^{\text {ce }}$ at B .
Proof.
In the \triangle FCG, because the $\angle \mathrm{FGC}$ is a rt. angle, Hyp. \therefore the \angle FCG is less than a rt. angle; I. 17.
\therefore the $\angle \mathrm{FGC}$ is greater than the $\angle \mathrm{FCG}$;
\therefore FC is greater than FG:
I. 19.
but $F C=F B$;
\therefore FB is greater than FG ,
the part greater than the whole, which is impossible.
\therefore FC cannot be otherwise than perp. to DE:
that is, FC is perp. to DE.
Q.E.D.

EXERCISES.

1. Draw a tangent to a circle (i) parallel to, (ii) at right angles to a given straight line.
2. Tangents drawn to a circle from the extremities of a diameter are parallel.
3. Circles which touch one another internally or externally have a common tangent at their point of contact.
4. In two concentric circles, any chord of the outer circle which touches the inner, is bisected at the point of contact.
5. In two concentric circles, all chords of the outer circle which touch the inner, are equal.

Proposition 19. Theorem.

The straight line drawn perpendicular to a tangent to a circle from the point of contact passes through the centre.

Let $A B C$ be a circle, and $D E$ a tangent to it at the point C; and let CA be drawn perp. to DE.

Then shall CA pass through the centre.
Construction. For if not, suppose, if possible, the centre F to be outside CA.

Join CF.

Proof. Because DE is a tangent to the circle, and FC is drawn from the centre F to the point of contact,
\therefore the $\angle F C E$ is a rt. angle.
III. 18.

But the $\angle A C E$ is a rt. angle ;
Нур.
\therefore the $\angle \mathrm{FCE}=$ the $\angle \mathrm{ACE}$;
the part equal to the whole, which is impossible.
\therefore the centre cannot be otherwise than in CA ; that is, CA passes through the centre.
Q.E.D.
exercises on the tangent.
Propositions 16, 17, 18, 19.

1. The centre of any circle which touches two intersecting straight lines must lie on the bisector of the angle between them.
2. $A B$ and $A C$ are two tangents to a circle whose centre is O; shew that $A O$ bisects the chord of contact $B C$ at right angles.
3. If two circles are concentric all tangents drawn from points on the circumference of the outer to the inner circle are equal.
4. The diameter of a circle bisects all chords which are parallel to the tangent at either extremity.
5. Find the locus of the centres of all circles which touch a given straight line at a given point.
6. Find the locus of the centres of all circles which touch each of two parallel straight lines.
7. Find the locus of the centres of all circles which touch each of two intersecting straight lines of unlimited length.
8. Describe a circle of given radius to touch two given straight lines.
9. Through a given point, within or without a circle, draw a chord equal to a given straight line.

In order that the problem may be possible, between what limits must the given line lie, when the given point is (i) without the circle, (ii) within it?
10. Two parallel tangents to a circle intercept on any third tangent a segment which subtends a right angle at the centre.
11. In any quadrilateral circumscribed about a circle, the sum of one pair of opposite sides is equal to the sum of the other pair.
12. Any parallelogram which can be circumscribed about a circle, must be equilateral.
13. If a quadrilateral is described about a circle, the angles subtended at the centre by any two opposite sides are together equal to two right angles.
14. $A B$ is any chord of a circle, $A C$ the diameter through A, and $A D$ the perpendicular on the tangent at B : shew that $A B$ bisects the angle DAC.
15. Find the locus of the extremities of tangents of fixed length drawn to a given circle.
16. In the diameter of a circle produced, determine a point such that the tangent drawn from it shall be of given length.
17. In the diameter of a circle produced, determine a point such that the two tangents drawn from it may contain a given angle.
18. Describe a circle that shall pass through a given point, and touch a given straight line at a given point. [See page 197. Ex. 5.]
19. Describe a circle of given radius, having its centre on a given straight line, and touching another given straight line.
20. Describe a circle that shall have a given radius, and touch a given circle and a given straight line. How many such circles can be drawn?

Proposition 20. Theorem.

The angle at the centre of a circle is double of an angle at the circumference, standing on the same arc.

Fig. r.

Fig. 2.

Let $A B C$ be a circle, of which E is the centre; and let $B E C$ be the angle at the centre, and BAC an angle at the O^{∞}, standing on the same are $B C$.

Then shall the $\angle B E C$ be double of the $\angle B A C$.
Construction. Join AE, and produce it to F.
Case I. When the centre E is within the angle BAC .
Proof. In the $\triangle \mathrm{EAB}$, because $\mathrm{EA}=\mathrm{EB}$, I. Def. 15.

$$
\therefore \text { the } \angle E A B=\text { the } \angle E B A \text {; I. } 5 \text {. }
$$

\therefore the sum of the $\angle{ }^{8} E A B, E B A=$ twice the $\angle E A B$.
But the ext. $\angle B E F=$ the sum of the $\angle^{8} E A B, E B A ;$ I. 32. \therefore the $\angle B E F=$ twice the $\angle E A B$.
Similarly the $\angle F E C=$ twice the $\angle E A C$.
\therefore the sum of the $\angle{ }^{3} B E F$, FEC $=$ twice the sum of the $\angle^{\circ} \mathrm{EAB}, \mathrm{EAC}$; that is, the $\angle B E C=$ twice the $\angle B A C$.

Case II. When the centre E is without the $\angle B A C$.
As before, it may be shewn that the $\angle F E B=$ twice the $\angle F A B$; also the $\angle \mathrm{FEC}=$ twice the $\angle \mathrm{FAC}$;
\therefore the difference of the \angle^{8} FEC, $\mathrm{FEB}=$ twice the difference of the $\angle^{\circ} \mathrm{FAC}, \mathrm{FAB}$:
that is, the $\angle B E C=$ twice the $\angle B A C$. Q.E.D.

Note 1. The case in which the centre E falls on $A B$ or $A C$ needs no proof beyond that given under Case I.

Note 2. If the arc BFC, on which the angles stand, is greater than a semi-circumference, the angle BEC at the centre will be reflex: but it may still be shewn as, in Case I., that the reflex $\angle B E C$ is double of the $\angle B A C$ at the \bigcirc^{∞}, standing on the same arc BFC.

Proposition 21. Theorem.
Angles in the same segment of a circle are equal.

Let $A B C D$ be a circle, and let BAD, BED be angles in the same segment BAED.

Then shall the $\angle \mathrm{BAD}=$ the $\angle \mathrm{BED}$.
Construction. Find F, the centre of the circle. III. 1.
CASE I. When the segment BAED is greater than a semicircle.
Join BF, DF.

Proof. Because the $\angle B F D$ is at the centre, and the $\angle B A D$ at the O^{∞}, standing on the same arc $B D$,

$$
\therefore \text { the } \angle \mathrm{BFD}=\text { twice the } \angle \mathrm{BAD} \text {. III. } 20 \text {. }
$$

$$
\begin{array}{rlr}
\text { Similarly the } \angle \mathrm{BFD} & =\text { twice the } / \text { BED. } & \text { III. } 20 . \\
\therefore \text { the } \angle \mathrm{BAD} & =\text { the } \angle \mathrm{BED.} & A x .7 .
\end{array}
$$

CASE II. When the segment BAED is not greater than a semicircle.

Construction.
Join AF, and produce it to meet the $\mathrm{O}^{\text {ce }}$ at C . Join EC.

Proof. Then since AEDC is a semicircle;
\therefore the segment BAEC is greater than a semicircle :
\therefore the $\angle \mathrm{BAC}=$ the $\angle \mathrm{BEC}$, in this segment. Case 1
Similarly the segment CAED is greater than a semicircle;
\therefore the $\angle C A D=$ the $\angle C E D$, in this segment.
\therefore the $\angle^{8} B A C, C A D=$ the sum of the $\angle{ }^{\circ} B E C, C E D$.
that is, the $\angle B A D=$ the $\angle B E D$.
Q.E.D.

EXERCISES.

1. P is any point on the arc of a segment of which $A B$ is the chord. Shew that the sum of the angles PAB, PBA is constant.
2. $P Q$ and $R S$ are two chords of a circle intersecting at X : prove that the triangles $\mathrm{PXS}, \mathrm{RXQ}$ are equiangular.
3. Two circles intersect at A and B; and through A any straight line PAQ is drawn terminated by the circumferences: shew that PQ subtends a constant angle at B.
4. Two circles intersect at A and B; and through A any two straight lines PAQ, XAY are drawn terminated by the circumferences; shew that the arcs $P X, Q Y$ subtend equal angles at B.
5. P is any point on the are of a segment whose chord is $A B$: and the angles PAB, PBA are bisected by straight lines which intersect at O. Find the locus of the point 0 .

Nots. If the extension of Proposition 20, given in Note 2 on page 199, is adopted, a separate treatment of the second case of the present proposition is unnecessary.

For, as in Case I.,
the reflex $\angle B F D=$ twice the $\angle B A D$; III. 20.
also the reflex $\angle B F D=$ twice the $\angle B E D$; \therefore the $\angle B A D=$ the $\angle B E D$.

Obs. The converse of Prop. 21 is important. For the construction used, viz. To describe a circle about a given triangle, see Book iv., Prop. 5, or Theorems and Examples on Book 1, page 111, No. 1.

Converse of Proposition 21.

Equal angles standing on the same base, and on the same side of it, have their vertices on an arc of a circle, of which the given base is the chord.

Let $B A C, B D C$ be two equal angles standing on the same base BC.

Then shall the vertices A and D lie upon a segment of a circle having BC as its chord.

Describe a circle about the $\triangle B A C$. Iv. 5. Then this circle shall pass through D.
For, if not, it must cut BD, or BD produced, at some other point E.
Join EC.

Then the $\angle B A C=$ the $\angle B E C$, in the same segment: III. 21. but the $\angle B A C=$ the $\angle B D C$, by hypothesis;

$$
\therefore \text { the } \angle \mathrm{BEC}=\text { the } \angle \mathrm{BDC} \text {; }
$$

that is, an ext. angle of a triangle =an int. opp. angle; which is impossible.
I. 16.
\therefore the circle which passes through B, A, C, cannot pass otherwise than through D.

That is, the vertices A and D are on an arc of a circle of which the chord is BC. Q.E.D.

Corollary. The locus of the vertices of triangles drawn on the same base and on the same side of it with equal vertical angles is an arc of a circle.

Proposition 22. Theorem.

The opposite angles of any quadrilateral inscribed in a circle are together equal to two right angles.

Let $A B C D$ be a quadrilateral inscribed in the $\odot A B C$.
Then shall (i) the $\left\llcorner^{3} \mathrm{ADC}, \mathrm{ABC}\right.$ together $=$ two rt . angles;
(ii) the $\angle^{8} \mathrm{BAD}, \mathrm{BCD}$ together $=$ two rt. angles.

Construction. Join AC, BD.
Proof.
Since the $\angle A D B=$ the $\angle A C B$, in the segment $A D C B ;$ III. 21 ,
and the $\angle C D B=$ the $\angle C A B$, in the segment $C D A B$;
\therefore the $\angle A D C=$ the sum of the $\angle^{B} A C B, C A B$.
To each of these equals add the $\angle A B C$:
then the two $\angle^{8} A D C, A B C$ together $=$ the three $\angle^{8} A C B$,
CAB, ABC.
But the $\angle^{3} A C B, C A B, A B C$, being the angles of a triangle, together = two rt. angles ;
I. 32 .
\therefore the $\angle{ }^{8} A D C, A B C$ together $=$ two rt. angles.
Similarly it may be shewn that
the $\angle^{8} B A D, B C D$ together $=$ two r t. angles. Q.E.D.

EXERCISES.

1. If a circle can be described about a parallelogram, the parallelogram must be rectangular.
2. $A B C$ is an isosceles triangle, and $X Y$ is drawn parallel to the base $B C$ cutting the sides in X and Y : shew that the four points B, $\mathrm{C}, \mathrm{X}, \mathrm{Y}$ lie on a circle.
3. If one side of a quadrilateral inscribed in a circle is produced, the exterior angle is equal to the opposite interior angle of the quadrilateral.

Proposition 22. [Alternative Proof.]

Let $A B C D$ be a quadrilateral inscribed in the $\odot A B C$. Then shall the $\angle{ }^{s} A D C, A B C$ together $=$ two rt. angles. Join FA, FC.
Since the $\angle A F C$ at the centre $=$ twice the $\angle A D C$ at the O^{∞}, standing on the same arc $A B C$;
III. 20.
and the reflex angle $A F C$ at the centre $=$ twice the $\angle A B C$ at the $O^{\text {ce, }}$, standing on the same arc ADC ; III. 20.
\therefore the $\angle A D C, A B C$ are together half the sum of the $\angle A F C$ and the reflex angle $A F C$; but these make up four rt. angles:

1. 15. Cor. 2.
\therefore the $\angle^{8} A D C, A B C$ together = two rt. angles. Q.E.D.

Definition. Four or more points through which a circle may be described are said to be concyclic.

Converse of Proposition 22.
If a pair of opposite angles of a quadrilateral are together equal to two right angles, its vertices are concyclic.

Let $A B C D$ be a quadrilateral, in which the opposite angles at B and D together $=$ two rt. angles.

Then shall the four points A, B, C, D be concyclic.

Through the three points A, B, C describe a circle.

Then this circle must pass through D.
For, if not, it will cut AD, or AD produced, at some other point E. Join EC.

Then since the quadrilateral $A B C E$ is inscribed in a circle, \therefore the $\angle{ }^{8} \mathrm{ABC}, \mathrm{AEC}$ together = two rt. angles. III. 22. But the $\angle{ }^{8} A B C, A D C$ together $=$ two r t. angles; Hyp. hence the $\angle{ }^{8} A B C, A E C=$ the $\angle{ }^{8} A B C, A D C$.

Take from these equals the $\angle A B C$; then the $\angle A E C=$ the $\angle A D C$;
that is, an ext. angle of a triangle=an int. opp. angle ; which is impossible.
I. 16.
\therefore the circle which passes through A, B, C cannot pass otherwise than through D:
that is the four vertices A, B, C, D are concyclic. Q.E.D.

Definition. Similar segments of circles are those which contain equal angles. [Book iiI., Def. 10.]

Proposition 23. Theorem.

On the same chord and on the same side of it, there cannot be two similar segments of circles, not coinciding with one another.

If possible, on the same chord $A B$, and on the same side of it, let there be two similar segments of circles ACB, ADB, not coinciding with one another.

Then since the ares ADB, ACB intersect at A and B,
\therefore they cannot cut one another again ; III. 10.
\therefore one segment falls within the other.
Construction. In the inner arc take any point C. Join AC, producing it to meet the outer arc at D: join CB, DB.
Proof. Then because the segments are similar, \therefore the $\angle A C B=$ the $\angle A D B$; III. Def. 10 . that is, an ext. angle of the $\triangle C D B=$ an int. opp. angle ; which is impossible.
I. 16 .

Hence the two similar segments $A C B, A D B$, on the same chord $A B$ and on the same side of it, must coincide. Q.E.D.

EXERCISES ON PROPOSITION 22.

1. The straight lines which bisect any angle of a quadrilateral figure inscribed in a circle and the opposite exterior angle, meet on the circumference.
2. A triangle is inscribed in a circle : shew that the sum of the angles in the three segments exterior to the triangle is equal to four right angles.
3. Divide a circle into two segments, so that the angle contained by the one shall be double of the angle contained by the other.

Proposition 24. Theorem.

Similar segments of circles on equal chords are equal to one another.

Let AEB and CFD be similar segments on equal chords $A B, C D$.

Then shall the segment $\mathrm{AEB}=$ the segment CFD .
Proof. If the segment AEB be applied to the segment $C F D$, so that A falls on C, and $A B$ falls along $C D$;

$$
\text { then since } A B=C D \text {, }
$$

$\therefore B$ must coincide with D.

\therefore the segment AEB must coincide with the segment CFD ; for if not, on the same chord and on the same side of it there would be two similar segments of circles, not coinciding with one another : which is impossible. III. 23.
\therefore the segment $\mathrm{AEB}=$ the segment CFD. Q.E.D.

EXERCISES.

1. Of two segments standing on the same chord, the greater segment contains the smaller angle.
2. A segment of a circle stands on a chord $A B$, and P is any point on the same side of $A B$ as the segment: shew that the angle APB is greater or less than the angle in the segment, according as P is within or without the segment.
3. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the middle points of the sides of a triangle, and X is the foot of the perpendicular let fall from one vertex on the opposite side : shew that the four points P, Q, R, X are concyclic.
[See page 104, Ex. 2: also page 108, Ex. 2.]
4. Use the preceding exercise to shew that the middle points of the sides of a triangle and the feet of the perpendiculars let fall from the vertices on the opposite sides, are concyclic.

Proposition 25. Problem.
An arc of a circle being given, to describe the whole circumference of which the given arc is a part.

Let ABC be an arc of a circle.
It is required to describe the whole $\mathrm{O}^{\text {ce }}$ of which the arc ABC is a part.

Construction.
In the given arc take any three points $\mathbf{A}, \mathrm{B}, \mathrm{C}$.
Join AB, BC.
Draw DF bisecting $A B$ at rt. angles, I. 10. 11. and draw EF bisecting $B C$ at rt. angles.

Proof.
Then because DF bisects the chord AB at rt. angles, \therefore the centre of the circle lies in DF. III. 1 Cor.
Again, because EF bisects the chord BC at rt. angles, \therefore the centre of the circle lies in EF. III. 1 Cor.
\therefore the centre of the circle is F, the only point commoin to DF and EF.
Hence the O^{∞} of a circle described with centre F, and radius $F A$, is that of which the given arc is a part. Q.E.F.

Note. Euclid gave to this proposition a somewhat different form, as follows :

Proposition 25. [Euclid's Method.]

A segment of a circle being given, to describe the circle of which it is a segment.

Let $A B C$ be the given segment of a circle, standing on the chord AC.

It is required to describe the circle of which ABC is a segment.
Construction. Draw DB, bisecting AC at rt. angles, and meeting the O^{∞} at B .
Join AB.

Case I. When the $\angle D A B$ is not equal to the $\angle A B D$.
At A, in $B A$, make the $\angle B A E$ equal to the $\angle A B D$;
I. 23. and let $A E$ meet $B D$, or $B D$ produced, at E. Join EC.
Then E shall be the centre of the required circle.
Proof. Since the $\angle E A B=$ the $\angle E B A$, Constr.
$\therefore E A=E B$.
I. 6.

$$
\text { And in the } \triangle E D A, E D C \text {, }
$$

Because $\left\{\begin{array}{c}\text { DA }=D C, \\ \text { and } E D \text { is common ; } \\ \text { also the } \angle E D A=\text { the } \angle E D C \text {, being rt. angles; }\end{array}\right.$

$$
\therefore E A=E C .
$$

Hence EA, EB, and EC are all equal ;
$\therefore E$ is the centre of the required circle, and $E A, E B, E C$ are radii.
CASE II. When the $\angle D A B=$ the $\angle A B D$. In this case it follows that $\mathrm{DB}=\mathrm{DA}$; I. 6. $\therefore D B, D A, D C$ are all equal, so that D is the centre of the required circle.

Proposition 26. Theorem.
In equal circles the arcs which subtend equal angles, whether at the centres or at the circumferences, shall be equal.

Let $A B C, D E F$ be equal circles; and let the $\angle^{8} B G C, E H F$ at the centres be equal, and consequently the $\angle^{8} B A C$, EDF at the $O^{\text {ces }}$ equal. III. 20. Then shall the arc $\mathrm{BKC}=$ the arc ELF.

Construction. Join BC, E.F.
Proof. Because the $\odot^{s} \mathrm{ABC}, \mathrm{DEF}$ are equal, \therefore their radii are equal.

Because $\left\{\begin{aligned} \mathrm{BG} & =\mathrm{EH}, \\ \text { and } \mathrm{GC} & =\mathrm{HF}, \\ \text { and the } \angle \mathrm{BGC} & =\text { the }-\mathrm{EHF} ;\end{aligned} \quad\right.$ Hyp.

$$
\therefore B C=E F .
$$

Again, because the $\angle \mathrm{BAC}=$ the $\angle \mathrm{EDF}, \quad H y p$.
\therefore the segment BAC is similar to the segment EDF; III. Def. 10.
and these segments are on equal chords $B C, E F$;
\therefore the segment $\mathrm{BAC}=$ the segment EDF. III. 24.
But the whole $\odot A B C=$ the whole \odot DEF;
\therefore the remaining segment $B K C=$ the remaining segment ELF;
\therefore the arc BKC $=$ the are ELF.
Q.E.D.
[For Exercises and an Alternative Proof see pp. 212, 213.]

Proposition 27. Theorem.

In equal circles the angles, whether at the centres or the circumferences, which stand on equal arcs, shall be equal.

Let $A B C$, $D E F$ be equal circles ; and let the arc $B C=$ the arc $E F$.
Then shall the $\angle \mathrm{BGC}=$ the $\angle \mathrm{EHF}$, at the centres; and also the $\angle \mathrm{BAC}=$ the $\angle \mathrm{EDF}$, at the $\mathrm{O}^{\text {cees }}$.

Construction. If the $\angle^{8} B G C, E H F$ are not equal, one must be the greater.

If possible, let the $\angle B G C$ be the greater.
At G, in $B G$, make the $\angle B G K$ equal to the $\angle E H F$. I. 23.
Proof. In the equal $\odot^{s} A B C, D E F$, because the $\angle \mathrm{BGK}=$ the $\angle \mathrm{EHF}$, at the centres ; Constr.

$$
\therefore \text { the are } \mathrm{BK}=\text { the are } \mathrm{EF} \text {. }
$$

But the arc $\mathrm{BC}=$ the are EF ;
 Нур.

\therefore the are $B K=$ the are $B C$,
a part equal to the whole, which is impossible.
\therefore the $\angle B G C$ is not unequal to the $\angle E H F$; that is, the $\angle \mathrm{BGC}=$ the $\angle E H F$.
And since the $\angle B A C$ at the $O^{\text {ce }}$ is half the $\angle B G C$ at the centre,
III. 20.
and likewise the $\angle E D F$ is half the $\angle E H F$,
\therefore the $\angle \mathrm{BAC}=$ the $\angle E D F$.
Ax. 7.
Q.E.D.

Proposition 28. Theorem.

In equal circles the arcs, which are cut off by equal chords, shall be equal, the major arc equal to the major arc, and the minor to the minor.

Let $A B C$, DEF be equal circles ; and let the chord $B C=$ the chord $E F$.
Then shall the major arc $\mathrm{BAC}=$ the major arc EDF ; and the minor arc $\mathrm{BGC}=$ the minor arc EHF .

Construction.

Find K and L the centres of the $\odot^{8} A B C$, DEF ; III. 1 . and join $B K, K C, E L$, $L F$.

Proof. Because the $\odot^{\circ} A B C, D E F$ are equal, \therefore their radii are equal.

Hence in the \triangle^{*} BKC, ELF,
Because $\left\{\begin{array}{rl}B K & =E L, \\ K C & =L F, \\ \text { and } & B C\end{array}=E F ;\right.$
\therefore the $\angle B K C=$ the $\angle E L F$.
I. 8 .
\therefore the are BGC $=$ the arc EHF;
for these arcs subtend equal angles at the centre ; III. 26. and they are the minor arcs.

But the whole $O^{\text {ce }}$ ABGC $=$ the whole $O^{\text {ce }}$ DEHF ; Hyp.
\therefore the remaining are $B A C=$ the remaining arc $E D F$: and these are the major ares.
Q.E.D.
[For Exercises see p. 212.]

Proposition 29. Theorem.

In equal circles the chords, which cut off equal arcs, shall be equal.

Let $A B C$, $D E F$ be equal circles ; and let the arc $\mathrm{BGC}=$ the arc EHF .
Then shall the chord $\mathrm{BC}=$ the chord EF .
Construction. Find K, L the centres of the circles. Join BK, KC, EL, LF.

Proof. In the equal $\odot^{s} A B C, D E F$, because the are $B G C=$ the arc $E H F$,
\therefore the $\angle B K C=$ the $\angle E L F$, at the centres. III. 27.
Hence in the $\triangle^{8} B K C, E L F$,
Because $\left\{\begin{array}{rlr}B K & =E L, \text { being radii of equal circles; } \\ K C & =L F, \text { for the same reason, } \\ \text { and the } \angle B K C & =\text { the } \angle E L F ; & \text { Proved. } \\ \therefore B C & =E F . & \text { I. 4. }\end{array}\right.$

EXERCISES.

ON PROPOSITIONS 26, 27.

1. If two chords of a circle are parallel, they intercept equal arcs.
2. The straight lines, which join the extremities of two equal arcs of a circle towards the same parts, are parallel.
3. In a circle, or in equal circles, sectors are equal if their angles at the centres are equal.
4. If two chords of a circle intersect at right angles, the opposite ares are together equal to a semi-circumference.
5. If two chords intersect within a circle, they form an angle equal to that subtended at the circumference by the sum of the arcs they cut off.
6. If two chords intersect without a circle, they form an angle equal to that subtended at the circumference by the difference of the arcs they cut off.
7. If AB is a fixed chord of a circle, and P any point on one of the arcs cut off by it, then the bisector of the angle APB cuts the conjugate arc in the same point, whatever be the position of P .
8. Two circles intersect at A and B ; and through these points straight lines are drawn from any point P on the circumference of one of the circles: shew that when produced they intercept on the other circumference an arc which is constant for all positions of P.
9. A triangle $A B C$ is inscribed in a circle, and the bisectors of the angles meet the circumference at X, Y, Z. Find each angle of the triangle $X Y Z$ in terms of those of the original triangle.

ON PROPOSITIONS 28, 29.

10. The straight lines which join the extremities of parallel chords in a circle (i) towards the same parts, (ii) towards opposite parts, are equal.
11. Through A, a point of intersection of two equal circles, two straight lines PAQ, XAY are drawn : shew that the chord PX is equal to the chord QY.
12. Through the points of intersection of two circles two parallel straight lines are drawn terminated by the circumferences : shew that the straight lines which join their extremities towards the same parts are equal.
13. Two equal circles intersect at A and B; and through A any straight line PAQ is drawn terminated by the circumferences : shew that $B P=B Q$.
14. $A B C$ is an isosceles triangle inscribed in a circle, and the bisectors of the base angles meet the circumference at X and Y. Shew that the figure BXAYC must have four of its sides equal.

What relation must subsist among the angles of the triangle $A B C$, in order that the figure BXAYC may be equilateral?

Note. We have given Euclid's demonstrations of Propositions 26, 27; but it should be noticed that these propositions also admit of proof by the method of superposition.

To illustrate this method we will apply it to Proposition 26.

Proposition 26. [Alternative Proof.]

In equal circles, the arcs which subtend equal angles, whether at the centres or circumferences, shall be equal.

Let ABC, DEF be equal circles ;
and let the \angle^{s} BGC, EHF at the centres be equal, and consequently the \angle^{8} BAC, EDF at the $O^{\text {ces }}$ equal. III. 20. Then shall the arc BKC=the arc ELF.

Proof. For if the \odot ABC be applied to the \odot DEF, so that the centre G may fall on the centre H,
then because the circles are equal, Hyp. \therefore their $O^{\text {ces }}$ must coincide;
hence by revolving the upper circle about its centre, the lower circle remaining fixed,
B may be made to coincide with E, and consequently GB with HE.
And because the $\angle B G C=$ the $\angle E H F$,
Hyp.
\therefore GC must coincide with HF :
and since $G C=H F$,
Нур.
\therefore C must fall on F.
Now B coincides with E, and C with F, and the $\bigcirc^{\text {ce }}$ of the $\odot A B C$ with the $\bigcirc^{\text {ce }}$ of the $\odot D E F$;
\therefore the are BKC must coincide with the arc ELF.
\therefore the arc $B K C=$ the arc ELF.
Q. E. D.

Proposition 30. Problem.

To bisect a given arc.

Let ADB be the given arc. It is required to bisect the arc ADB .
Construction. Join $A B$; and bisect $A B$ at C. I. 10 .
At C draw $C D$ at rt. angles to $A B$, meeting the given are at D.

Then shall the arc ADB be bisected at D . Join AD, BD.

Proof. In the $\triangle^{s} A C D, B C D$,
Because $\left\{\begin{array}{c}A C=B C, \\ \text { and } C D \text { is common ; } \\ \text { and the } \angle A C D=\text { the } \angle B C D, \text { being rt. angles : }\end{array}\right.$

$$
\therefore A D=B D .
$$

And since in the $\odot A D B$, the chords $A D, B D$ are equal, \therefore the ares cut off by them are equal, the minor arc equal
to the minor, and the major are to the major: III. 28. and the ares $A D, B D$ are both minor ares,
for each is less than a semi-circumference, since $D C$, bisecting the chord $A B$ at rt. angles, must pass through the centre of the circle.
\therefore the arc $A D=$ the arc $B D$:
that is, the arc $A D B$ is bisected at D. Q.E.F.

EXERCISES.

1. If a tangent to a circle is parallel to a chord, the point of contact will bisect the arc cut off by the chord.
2. Trisect a quadrant, or the fourth part of the ciroumference, of a circle.

Note. The following alternative proof of Proposition 30 removes the necessity of distinguishing between the major and minor ares cut off by the chords $A D, B D$.

Proposition 30. [Alternative Proof.]
The construction being made as before, we may proceed thus :

Proof.
Because $\left\{\begin{array}{c}A C=B C, \\ \text { and } C D \text { is common; } \\ \text { and the } \angle A C D=\text { the } \angle B C D, \text { being rt. angles : }\end{array}\right.$ \therefore the $\angle D A C=$ the $\angle D B C$:
I. 4. that is, the $\angle \mathrm{DAB}=$ the $\angle \mathrm{DBA}$.

But these are angles at the $O^{c e}$ subtended by the arcs DB, DA;
\therefore the arc $\mathrm{DB}=$ the arc DA :
III. 26.
that is, the arc ADB is bisected at D. Q.E.F.

QURATIONS FOR REVISION.

1. When is a straight line said (i) to meet, (ii) to cut, (iii) to fouch, the circumference of a circle?
2. When are circles said to touch one another? Distinguish between internal and external contact.
3. What theorems have been so far proved by Euclid regarding (i) circles which cut one another, (ii) circles which touch one another?
4. If two unequal circles are concentric, shew that one must lie wholly within the other.
5. Shew how to divide the circumference of a circle into three, four, or six equal parts.
6. Enunciate the propositions so far proved by Euolid relating to the properties of a tangent to a circle.

Proposition 31. Theorem.

The angle in a semicircle is a right angle.
The angle in a segment greater than a semicircle is less than a right angle.

The angle in a segment less than a semicircle is greater than a right angle.

Let $A B C D$ be a circle, of which $B C$ is a diameter, and E the centre; and let $A C$ be a chord dividing the circle into the segments $A B C, A D C$, of which the segment $A B C$ is greater, and the segment ADC is less than a semicircle.
Then (i) the angle in the semicircle BAC shall be a right angle;
(ii) the angle in the segment ABC shall be less than a rt. angle;
(iii) the angle in the segment ADC shall be greater than a rt. angle.

Construction. In the are ADC take any point D; Join BA, AD, DC, AE ; and produce BA to F.

Proof.

$$
\begin{align*}
\text { Because } E A & =E B, \tag{i}\\
\text { the } \angle E A B & =\text { the } \angle E B A . \\
\text { And because } E A & =E C, \\
\therefore \text { the } \angle E A C & =\text { the } \angle E C A .
\end{align*}
$$

I. Def. 15 .
I. 5
\therefore the whole $\angle B A C=$ the sum of the $\angle^{8} E B A, E C A$:
but the ext. $\angle \mathrm{FAC}=$ the sum of the two int. $\angle{ }^{8} \mathrm{CBA}, \mathrm{BCA}$;
\therefore the $\angle B A C=$ the $\angle F A C$;
\therefore these angles, being adjacent, are rt. angles.
\therefore the $\angle B A C$, in the semicircle $B A C$, is a rt. angle.
(ii) In the $\triangle A B C$, because the sum of the $\angle^{\circ} A B C, B A C$ is less than two rt. angles;
I. 17.
and of these, the $\angle B A C$ is a rt. angle; Proved.
\therefore the $\angle A B C$, which is the angle in the segment $A B C$, is less than a rt. angle.
(iii) Because $A B C D$ is a quadrilateral inseribed in the © ABC,
\therefore the opp. \angle ABC, ADC together $=$ two rt. angles; III. 22. and of these, the $\angle A B C$ is less than a rt. angle: Proved. \therefore the $\angle A D C$, which is the angle in the segment $A D C$, is greater than a rt. angle.

EXERCISES.

1. A circle described on the hypotenuse of a right-angled triangle as diameter, passes through the opposite angular point.
2. A system of right-angled triangles is described upon a given straight line as hypotenuse ; find the locus of the opposite angular points.
3. A straight rod of given length slides between two straight rulers placed at right angles to one another ; find the locus of its middle point.
4. Two circles intersect at A and B; and through A two diameters $A P, A Q$ are drawn, one in each circle: shew that the points P, B, Q are collinear. [See Def. p. 110.]
5. A circle is described on one of the equal sides of an isosceles triangle as diameter. Shew that it passes through the middle point of the base.
6. Of two circles which have internal contact, the diameter of the inner is equal to the radius of the outer. Shew that any chord of the outer circle, drawn from the point of contact, is bisected by the circumference of the inner circle.
7. Circles described on any two sides of a triangle as diameters intersect on the third side, or the third side produced.
8. Find the locus of the middle points of chords of a circle drawn through a fixed point. Distinguish between the cases when the given point is within, on, or without the circumference.
9. Describe a square equal to the difference of two given squares.
10. Through one of the points of intersection of two circles draw a chord of one circle which shall be bisected by the other.
11. On a given straight line as base a system of equilateral four-sided figures is described : find the locus of the intersection of their diagonals.

NOTES ON PROPOSITION 31.

Note 1. The extension of Proposition 20 to straight and reflex angles furnishes a simple alternative proof of the first theorem contained in Proposition 31, namely,

The angle in a semicircle is a right angle.
For, in the adjoining figure, the angle at the centre, standing on the are BHC, is double the angle $B A C$ at the $O^{c e}$, standing on the same arc.

Now the angle at the centre is the straight angle BEC ;
\therefore the $\angle B A C$ is half of the straight angle $B E C$:
and a straight angle $=$ two rt . angles ;
\therefore the $\angle B A C=$ one half of two rt. angles,
$=o n e r t$. angle.
Q.E.D.

Note 2. From Proposition 31 we may derive a simple practical solution of Proposition 17, namely,

To draw a tangent to a circle from a given external point.
Let BCD be the given circle, and A the given external point.

It is required to draw from A a tangent to the $\odot B C D$.

Find E, the centre of the given circle, and join $A E$.

On AE describe the semicircle $A B E$, to cut the given circle at B.

Join AB.
Then AB shall be a tangent
 to the $\odot \mathrm{BCD}$.

For the $\angle A B E$, being in a semicircle, is a rt. angle. III. 31.
$\therefore A B$ is drawn at $r t$. angles to the radius $E B$, from its extremity B;
$\therefore A B$ is a tangent to the circle.
III. 16.
Q.E.F.

Since the semicircle might be described on either side of $A E$, it is clear that there will be a second solution of the problem, as shewn by the dotted lines of the figure.

QUESTIONS FOR REVISION AND NUMERICAL EXERCISES.

1. Define an arc, a chord, a segment of a circle. When are segments of circles said to be similar to one another?
2. Enunciate propositions which give the properties of chords of a circle in relation to the centre.
3. Prove that in a circle whose diameter is 34 inches, a chord 30 inches in length is at a distance of 8 inches from the centre.
4. In a circle a chord 2 feet in length stands at a distance of 5 inches from the centre : shew that the diameter of the circle is 2 inches longer than the chord.
5. What must be the length of a chord which is 1 foot distant from the centre of a circle, if the diameter is 2 yards 2 inches?
6. Two parallel chords of a circle, whose diameter is 13 inches, are respectively 5 inches and 1 foot in length: shew that the distance between them is $8 \frac{1}{2}$ inches, or $3 \frac{1}{2}$ inches.
7. Two circles, whose radii are respectively 26 inches and 25 inches, intersect at two points which are 4 feet apart. Shew that the distance between their centres is 17 inches.
8. The diameters of two concentric circles are respectively 50 inches and 48 inches: shew that any chord of the outer circle which touches the inner must be 14 inches in length.
9. Of two concentric circles the diameter of the greater is 74 inches, and any chord of it which touches the smaller circle is 70 inches in length: shew that the diameter of the smaller circle is 2 feet.
10. Two circles of diameters 74 and 40 inches respectively have a common chord 2 feet in length : shew that the distance between their centres is 51 inches.
11. The chord of an arc is 24 inches in length, and the height of the are is 8 inches; shew that the diameter of the circle is 26 inches.
12. $A B$ is a line 20 inches in length, and C is its middle point. On $A B, A C, C B$ semicircles are described. Shew that if a circle is inscribed in the space enclosed by the three semicircles its radius must be $3 \frac{1}{5}$ inches.

Proposition 32. Theorem.

If a straight line touches a circle, and from the point of contact a chord is drawn, the angles which this chord makes with the tangent shall be equal to the angles in the alternate segments of the circle.

Let $E F$ touch the given $\odot A B C$ at B, and let $B D$ be a chord drawn from B, the point of contact.

Then shall
(i) the $\angle \mathrm{DBF}=$ the angle in the alternate segment BAD :
(ii) the $\angle \mathrm{DBE}=$ the angle in the alternate segment BCD .

Construction. From B draw BA perp. to EF.
I. 11.

Take any point C in the are BD; and join AD, DC, CB.
(i) Proof. Because BA is drawn perp. to the tangent EF, at its point of contact B,
\therefore BA passes through the centre of the circle: iII. 19.
\therefore the $\angle A D B$, being in a semicircle, is a rt. angle: III. 31.
\therefore in the $\triangle A B D$, the other $\angle^{3} A B D, B A D$ together $=\mathrm{a}$ rt. angle;
I. 32.
that is, the $\angle^{8} A B D, B A D$ together $=$ the $\angle A B F$.
From these equals take the common $\angle A B D$;
\therefore the $\angle \mathrm{DBF}=$ the $\angle \mathrm{BAD}$, which is in the alternate seg. ment.
(ii) Because $A B C D$ is a quadrilateral inscribed in a circle,
\therefore the opp. $\angle^{8} B C D, B A D$ together $=$ two rt. angles: iII. 22.
but the \angle^{8} DBE, DBF together $=$ two rt. angles ; I. 13.
\therefore the \angle^{8} DBE, DBF together $=$ the $\angle^{\circ} B C D, B A D$;
and of these the $\angle \mathrm{DBF}=$ the $\angle \mathrm{BAD}$; Proved.
\therefore the $\angle D B E=$ the $\angle B C D$, which is in the alternate segment.
Q.E.D.

EXERCISES.

1. State and prove the converse of Proposition 32.
2. Use this proposition to shew that the tangents drawn to a circle from an external point are equal.
3. If two circles touch one another, any straight line drawn through the point of contact cuts off similar segments.

Prove this for (i) internal, (ii) external contact.
4. If two circles touch one another, and from A, the point of contact, two chords APQ, AXY are drawn : then PX and QY are parallel.

Prove this for (i) internal, (ii) external contact.
5. Two circles intersect at the points A, B : and one of them passes through O, the centre of the other: prove that OA bisects the angle between the common chord and the tangent to the first circle at A.
6. Two circles intersect at A and B; and through P, any point on the circumference of one of them, straight lines PAC, PBD are drawn to cut the other circle at C and D : shew that $C D$ is parallel to the tangent at P.
7. If from the point of contact of a tangent to a circle, a chord is drawn, the perpendiculars dropped on the tangent and chord from the middle point of either arc cut off by the chord are equal.

Proposition 33. Problem.

On a given straight line to describe a segment of a circle which shali contain an angle equal to a given angle.

Let $A B$ be the given st. line, and C the given angle. It is required to describe on AB a segment of a circle which shall contain an angle equal to C .
Construction.
At A in $B A$, make the $\angle B A D$ equal to the $\angle C$. I. 23.
From A draw $A E$ at r t. angles to $A D$.
I. 11.

Bisect $A B$ at F.
I. 10 .

From F draw $F G$ at rt. angles to $A B$, cutting $A E$ at G.
Join GB.

Then in the $\triangle^{s} A F G, B F G$,

$$
A F=B F
$$

Because $\left\{\begin{array}{c}A F=B F, \\ \text { and } F G \text { is common, } \\ \text { and the } \angle A F G=\text { the } \angle B F G \text {, being rt. angles ; }\end{array}\right.$

$$
\therefore \mathrm{GA}=\mathrm{GB}:
$$

I. 4 .
\therefore the circle described with centre G, and radius $G A$, will pass through B.

Describe this circle, and call it ABH.
Then the segment AHB shall contain an angle equal to C .
Proof. Because $A D$ is drawn at rt . angles to the radius GA from its extremity A,
\therefore the angle in the segment $A H B=$ the $\angle C$.

$$
\therefore A H B \text { is the segment required. Q.E.F. }
$$

Note. In the particular case when the given angle C is a rt. angle, the segment required will be the semicircle described on the given st. line $A B$; for the angle in a semicircle is a rt. angle.
III. 31.

EXERCISES.

[The following exercises depend on the corollary to the Converse of Proposition 21 given on page 201, namely

The locus of the vertices of triangles which stand on the same base and have a given vertical angle, is the arc of the segment standing on this base, and containing an angle equal to the given angle.

Exercises 1 and 2 afford good illustrations of the method of finding required points by the Intersection of Loci. See page 125.]

1. Describe a triangle on a given base, having a given vertical angle, and having its vertex on a given straight line.
2. Construct a triangle, having given the base, the vertical angle and (i) one other side.
(ii) the altitude.
(iii) the length of the median which bisects the base.
(iv) the point at which the perpendicular from the vertex meets the base.
3. Construct a triangle having given the base, the vertical angle, and the point at which the base is cut by the bisector of the vertical angle.
[Let $A B$ be the base, X the given point in it, and K the given angle. On $A B$ describe a segment of a circle containing an angle equal to K; complete the $\mathrm{O}^{\text {ce }}$ by drawing the arc APB. Bisect the arc $A P B$ at P : join $P X$, and produce it to meet the $O^{c e}$ at C. Then $A B C$ shall be the required triangle.]
4. Construct a triangle having given the base, the vertical angle, and the sum of the remaining sides.
[Let $A B$ be the given base, K the given angle, and H the given line equal to the sum of the sides. On $A B$ describe a segment containing an angle equal to K, also another segment containing an angle equal to half the $\angle \mathrm{K}$. From centre A, with radius H, describe a circle cutting the arc of the last drawn segment at X and Y. Join AX (or AY) cutting the arc of the first segment at C. Then $A B C$ shall be the required triangle.]
5. Construct a triangle having given the base, the vertical angle, and the difference of the remaining sides.

Proposition 34. Problem.

From a given circle to cut off a scgment which shall contain an angle equal to a given angle.

Let $A B C$ be the given circle, and D the given angle. It is required to cut off from the $\odot \mathrm{ABC}$ a segment which shall contain an angle equal to D.

Construction. Take any point B on the $O^{c e}$, and at B draw the tangent EBF.
III. 17.

At B, in $F B$, make the $\angle F B C$ equal to the $\angle D$. I. 23.
Then the segment BAC shall contain an angle equal to D .
Proof. Because EF is a tangent to the circle, and from B, its point of contact, a chord BC is drawn,
\therefore the $\angle \mathrm{FBC}=$ the angle in the alternate segment BAC. III. 32.

But the $\angle F B C=$ the $\angle D$;

Constr.
\therefore the angle in the segment $B A C=$ the $\angle \mathrm{D}$.
Hence from the given \odot ABC a segment BAC has been cut off, containing an angle equal to D.

EXERCISES.

1. The chord of a given segment of a circle is produced to a fixed point : on this straight line so produced draw a segment of a circle similar to the given segment.
2. Through a given point without a circle draw \approx straight line that will cut off a segment capable of containing an angle equal to a given angle.

QUESTIONS FOR REVISION.

1. Enunciate the propositions from which we infer that a straight line and a circle must either
(i) intersect in two points ; or
(ii) touch at one point ; or
(iii) have no point in common.
2. Give two independent constructions for drawing a tangent to a circle from an external point.

Shew that the two tangents so drawn
(i) are equal ;
(ii) subtend equal angles at the centre ;
(iii) make equal angles with the straight line which joins the given point to the centre.
3. Enunciate propositions relating to
(i) angles in a segment of a circle;
(ii) similar segments of circles.
4. What are conjugate arcs of a circle ?

The angles in conjugate segments of a circle are supplementary. How does Euclid enunciate this theorem? State and prove its converse.
5. Explain what is meant by a reflex angle. What simplifications may be made in the proofs of Third Book Propositions if reflex angles are admitted?
6. If the circumference of a circle is divided into six equal arcs, shew that the chords joining successive points of division are all equal to the radius of the circle.
7. Find the locus of the centres of all circles
(i) which pass through two given points ;
(ii) which touch a given circle at a given point ;
(iii) which are of given radius, and touch a given circle ;
(iv) which are of given radius, and pass through a given point ;
(v) which touch a given straight line at a given point ;
(vi) which touch each of two parallel straight lines;
(vii) which touch each of two intersecting straight lines of unlimited length.
8. If a system of triangles stand on the same base and on the same side of it, and have equal vertical angles, shew that the locus of their vertices is the arc of a circle. Prove this theorem, having first enunciated the proposition of which it is the converse.

Proposition 35. Theorem.

If two chords of a circle cut one another, the rectangle. contained by the segments of one shall be equal to the rectangte contained by the segments of the other.

Let $A B, C D$, two chords of the $\odot A C B D$, cut one another at E .

Then shall the rect. $\mathrm{AE}, \mathrm{EB}=$ the rect. CE, ED.
Construction. Find F, the centre of the $\odot A C B ;$ iII. 1. From F draw $F G$, $F H$ perp. respectively to $A B, C D$. I. 12. Join FA, FE, FD.
Proof. Because $F G$ is drawn from the centre F perp. to $A B$, $\therefore \mathrm{AB}$ is bisected at G .
III. 3.

For a similar reason CD is bisected at H .
Again, because $A B$ is divided equally at G, and unequally at E, \therefore the rect. $A E$, $E B$ with the sq. on $E G=$ the sq. on AG. II. 5 .

To each of these equals add the sq. on GF ;
then the rect. $A E, E B$ with the sqq. on $E G, G F=$ the sum of the sqq. on AG, GF.

But the sqq. on $E G, G F=$ the sq. on $F E$;
I. 47.
and the sqq. on $A G, G F=$ the sq. on $A F$;
for the angles at G are rt. angles.
\therefore the rect. $A E, E B$ with the sq. on $F E=$ the sq. on $A F$.
Similarly it may be shewn that
the rect. $C E, E D$ with the sq. on $F E=$ the sq. on $F D$.
But the sq. on $A F=$ the sq. on $F D$; for $A F=F D$.
\therefore the rect. $A E, E B$ with the sq. on $F E=$ the rect. $C E, E D$ with the sq. on FE .

From these equals take the sq. on FE :
then the rect. $A E, E B=$ the rect. $C E, E D$. Q.E.D.

Corollary. If through a fixed point within a circle any number of chords are drawn, the rectangles contained by their segments are all equul.

Note. The following special cases of this proposition deserve notice :
(i) when the given chords both pass through the centre:
(ii) when one chord passes through the centre, and cuts the other at right angles :
(iii) when one chord passes through the centre, and cuts the other obliquely.
In each of these cases the general proof requires some modification, which may be left as an exercise to the student.

EXERCISES.

1. Two straight lines AB, CD intersect at E , so that the rectancle AE, EB is equal to the rectangle CE, ED; shew that the four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are concyclic.
2. The rectangle contained by the segments of any chord drawn through a given point within a circle is equal to the square on half the shortest chord which may be drawn through that point.
3. $A B C$ is a triangle right-angled at C; and from C a perpendicular $C D$ is drawn to the hypotenuse: shew that the square on $C D$ is equal to the rectangle $A D, D B$.
4. $A B C$ is a triangle ; and $A P, B Q$, the perpendiculars dropped from A and B on the opposite sides, intersect at O : shew that the rectangle $A O, O P$ is equal to the rectangle $B O, O Q$.
5. Two circles intersect at A and B, and through any point in $A B$ their common chord two chords are drawn, one in each circle ; shew that their four extremities are concyclic.
6. A and B are two points within a circle such that the rectangle contained by the segments of any chord drawn through A is equal to the rectangle contained by the segments of any chord through B: shew that \bar{A} and B are equidistant from the centre.
7. If through E , a point without a circle, two secants, EAB, ECD are drawn; shew that the rectangle EA, EB is equal to the rectangle EC, ED.
[Proceed as in III. 35, using II. 6.]
8. Through A, a point of intersection of two circles, two straight lines CAE, DAF are drawn, each passing through a centre and terminated by the circumferences : shew that the rectangle CA, AE is equal to the rectangle DA, AF.

Proposition 36. Theorem.

If from any point without a circle a tangent and a secant are drawn, then the rectangle contained by the whole secant and the part of it without the circle shall be equal to the square on the tangent.

Let $A B C$ be a circle; and from D, a point without it, let there be drawn the secant DCA, and the tangent DB.

Then the rect. DA, DC shall be equal to the sq. on DB.
Construction. Find E, the centre of the $\odot A B C$: III. 1. and from E, draw $E F$ perp. to $A D$. I. 12. Join EB, EC, ED.
Proof. Because EF, passing through the centre, is perp. to the chord AC, $\therefore A C$ is bisected at F.
III. 3.

And since $A C$ is bisected at F and produced to D,
\therefore the rect. DA, DC with the sq. on $F C=$ the sq. on FD. II. 6. To each of these equals add the sq. on EF:
then the rect. DA, DC with the sqq. on $E F, F C=$ the sqq. on
EF, FD.
But the sqq. on EF, $F C=$ the sq. on EC; for EFC is a rt. angle; $=$ the sq. on EB.
And the sqq. on EF, $F D=$ the sq. on ED; for EFD is a rt. angle;
$=$ the sqq. on EB, BD ; for EBD is a rt. angle.
III. 18.
\therefore the rect. $D A, D C$ with the sq. on $E B=$ the sqq. on $E B, B D$.
From these equals take the sq. on EB:
then the rect. $D A, D C=$ the sq. on $D B . \quad$ Q.E.D.
Note. This proof may easily be adapted to the case when the secant passes through the centre of the circle.

Corollary. If from a given point without a circle any number of secants are drawn, the rectungles contained by the whole secants and the parts of them without the circle are all equal; for each of these rectangles is equal to the square on the tengent drawn from the given point to the circle.

For instance, in the adjoining figure, each of the rectangles PB, PA and PD, PC and $P F, P E$ is equal to the square on the tangent PQ:

\therefore the rect. PB, PA

$$
\begin{aligned}
& =\text { the rect. PD, PC } \\
& =\text { the rect. } \mathrm{PF}, \mathrm{PE} .
\end{aligned}
$$

Note. Remembering that the segments into which the chord $A B$ is divided at P, are the lines PA, PB, (see Def., page 139) we are enabled to include the corollaries of Propositions 35 and 36 in a single enunciation.

If any number of chords of a circle are drawn through a given point within or without a circle, the rectangles contained by the segments of the chords are equal.

EXERCISES.

1. Use this proposition to shew that tangents drawn to a circle from an external point are equal.
2. If two circles intersect, tangents drawn to them from any point in their common chord produced are equal.
3. If two circles intersect at A and B, and $P Q$ is a tangent to both circles; shew that $A B$ produced bisects PQ.
4. If P is any point on the straight line $A B$ produced, shew that the tangents drawn from P to all circles which pass through A and B are equal.
5. $A B C$ is a triangle right-angled at C, and from any point P in $A C$, a perpendicular $P Q$ is drawn to the hypotenuse: shew that the rectangle $A C, A P$ is equal to the rectangle $A B, A Q$.
6. $A B C$ is a triangle right-angled at C, and from C a perpendicular $C D$ is drawn to the hypotenuse : shew that the rect. $A B, A D$ is equal to the square on $A C$.

Proposition 37. Theorem.

If from a point without a circle there are drawn two straight lines, one of which cuts the circle, and the other meets it, and if the rectangle contained by the whole line which cuts the sircle and the part of it without the circle is equal to the square on the line which meets the circle, then the line which meets the circle shall be a tangent to it.

Let $A B C$ be a circle; and from D, a point without it, let there be drawn two st lines DCA and DB, of which DCA cuts the circle at C and A, and DB meets it ; and let the rect. $\mathrm{DA}, \mathrm{DC}=$ the sq. on DB .

Then shall DB be a tangent to the circle.
Construction. From D draw $D E$ to touch the $\odot A B C$: III. 17. let E be the point of contact.
Find the centre F, and join FB, FD, FE. III. 1.
Proof. Since DCA is a secant, and DE a tangent to the circle, the rect. $D A, D C=$ the $s q$. on $D E$,
III. 36. But, by hypothesis, the rect. DA, DC = the sq. on DB;
\therefore the sq. on DE $=$ the sq. on DB ;

$$
\therefore \mathrm{DE}=\mathrm{DB} .
$$

Hence in the $\triangle^{s} D B F, D E F$,
Because $\left\{\begin{array}{lr}\mathrm{DB}=\mathrm{DE}, & \text { Proved. } \\ \text { and } \mathrm{BF}=\mathrm{EF} ; \\ \text { and } \mathrm{DF} \text { is common; } & \text { I. Def. } 15 .\end{array}\right.$ \therefore the $\angle D B F=$ the $\angle D E F$.
I. 8 .

But DEF is a rt. angle, for DE is a tangent ; iII. 18.
\therefore DBF is also a rt. angle ; and since $B F$ is a radius,
\therefore DB touches the $\odot A B C$ at the point B. Q.E.D.

Euclid defines a tangent to a circle as a straight line which meets the circumference, but leing mroduced, roes not cut it: and from this definition he deduces the fundamental theorem that a tangent is perpendicular to the radius drawn to the point of contact. III. Prop. 16.

But this result may also be established by the Method of Limits, which regards the tangent as the ultimate position of a secant when its two points of intersection with the circumference are brought into coincidence [See Note on page 165] : and it may be shewn that every theorem relating to the tangent may be derived from some more general proposition relating to the sceant, by considering the ultimate case when the two points of intersection coincide.

1. To prove by the Method of Limits that a tangent to a circle is at right angles to the radius drawn to the point of contact.

Let $A B D$ be a circle, whose centre is C; and PABQ a secant cutting the $O^{c e}$ in A and B; and let $P^{\prime} A Q^{\prime}$ be the limiting position of $P Q$ when the point B is brought into coincidence with A.

Then shall CA be perp. to $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$.
Bisect $A B$ at E and join $C E$: then CE is perp. to PQ. III. 3.
Now let the secant PABQ change its position in such a way that while the point A remains fixed, the point B continually approaches A, and ultimately
 coincides with it ;
then, however near B approaches to A, the st. line CE is always perp. to $P Q$, since it joins the centre to the middle point of the chord $A B$.

But in the limiting position, when B coincides with A, and the secant $P Q$ becomes the tangent $P^{\prime} Q^{\prime}$, it is clear that the point E will also coincide with A; and the perpendicular CE becomes the radius CA. Hence CA is perp. to the tangent $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ at its point of contact A.
Q.E.D.

Note. It follows from Proposition 2 that a straight line cannot cut the circumference of a circle at more than two points. Now when the two points in which a secant cuts a circle move towards coincidence, the secant ultimately becomes a tangent to the circle: we infer therefore that a tangent cannot meet a circle otherwise than at its point of contact. Thus Euclid's definition of a tangent may be deduced from that given by the Method of Limits.
2. By this method Proposition 32 may be derived as a special case from Proposition 21.

For let A and B be two points on the $O^{c e}$ of the $\odot A B C$; and let BCA, BPA be any two angles in the segment BCPA:
then the $\angle B P A=$ the $\angle B C A$.
III. 21. Produce PA to Q.
Now let the point P continually approach the fixed point A, and ultimately coincide with it;
then, however near P may approach to A , the $\angle \mathrm{BPQ}=$ the $\angle \mathrm{BCA}$. III. 21.
But in the limiting position when

P coincides with A,

$$
\text { and the secant PAQ becomes the tangent } \mathrm{AQ}^{\prime} \text {, }
$$

it is clear that $B P$ will coincide with $B A$, and the $\angle B P Q$ becomes the $\angle B A Q^{\prime}$.
Hence the $\angle \mathrm{BAQ}^{\prime}=$ the $\angle B C A$, in the alternate segment. Q.E.D.
The contact of circles may be treated in a similar manner by adopting the following definition.

Definition. If one or other of two intersecting circles alters its position in such a way that the two points of intersection continually approach one another, and ultimately coincide; in the limiting position they are said to touch one another, and the point in which the two points of intersection ultimately coincide is called the point of contact.

EXAMPLES ON LIMITS.

1. Deduce Proposition 19 from the Corollary of Proposition 1 and Proposition 3.
2. Deduce Propositions 11 and 12 from Ex. 1, page 171.
3. Deduce Proposition 6 from Proposition 5.
4. Deduce Proposition 13 from Proposition 10.
5. Shew that a straight line cuts a circle in two different points, two coincident points, or not at all, according as its distance from the centre is less than, equal to, or greater than a radius.
6. Deduce Proposition 32 from Ex. 3, page 202.
7. Deduce Proposition 36 from Ex. 7, page 227.
8. The angle in a semi-circle is a right angle.

To what Theorem is this statement reduced, when the vertex of the right angle is brought into coincidence with an extremity of the diameter?
9. From Ex. 1, page 204, deduce the corresponding property of a triangle inscribed in a circle.

THEOREMS AND EXAMPLES ON BOOK III.

I. ON THE CENTRE AND CHORDS OF A CIRCLE.
[See Propositions 1, 3, 14, 15, 25.]

1. All circles which pass through a fixed point, and have their centres on a given straight line, pass also through a second fixed point.

Let $A B$ be the given st. line, and P the given point.

From P draw $P R$ perp. to $A B$; and produce $P R$ to P^{\prime}, making R^{\prime} equal to $P R$.
Then all circles which pass through P , and have their centres on $A B$, shall pass also through P^{\prime}.

For let C be the centre of any one of these circles.
Join CP, CP'.
Then in the $\triangle^{8} C R P, C R P^{\prime}$,
Because $\left\{\begin{array}{c}C R \text { is common, } \\ \text { and } R P=R P^{\prime}, \\ \text { and } \angle C R P=\text { the } \angle C R P^{\prime}, \text { being rt. angles; } \\ \therefore C P=C P^{\prime} ;\end{array}\right.$
\therefore the circle whose centre is C, and which passes throngh P, must pass also through P^{\prime}.
But C is the centre of any circle of the system;
\therefore all circles, which pass through P, and have their centres in $A B$, pass also through P^{\prime}.
Q. E. D.
2. Describe a circle that shall pass through three given points not in the same straight line.
3. Describe a circle that shall pass through two given points and have its centre in a given straight line. When is this impossible ?
4. Describe a circle of given radius to pass through two given points. When is this impossible?
5. $A B C$ is an isosceles triangle; and from the vertex A, as centre, a circle is described cutting the base, or the base produced, at X and Y. Shew that $B X=C Y$.
6. If two circles which intersect are cut by a straight line parallel to the common chord, shew that the parts of it intercepted between the circumferences are equal.
7. If two circles cut one another, any two straight lines drawn through a point of section, making equal angles with the common chord, and terminated by the circumferences, are equal.

$$
[\text { Ex. 12, p. 171.] }
$$

8. If two circles cut one another, of all straight lines drawn through a point of section and terminated by the circumferences, the greatest is that which is parallel to the line joining the centres.
9. Two circles, whose centres are C and D, intersect at A, B; and through A a straight line PAQ is drawn terminated by the circumferences: if PC, QD intersect at X, shew that the angle PXQ is equal to the angle CAD.
10. Through a point of section of two circles which cut one another draw a straight line terminated by the circumferences and bisected at the point of section.
11. $A B$ is a fixed diameter of a circle, whose centre is C; and from P, any point on the circumference, $P Q$ is drawn perpendicular to $A B$; shew that the bisector of the angle CPQ always intersects the circle in one or other of two fixed points.
12. Circles are described on the sides of a quadrilateral as diameters: shew that the common chord of any two consecutive circles is parallel to the common chord of the other two.
[Ex. 9, p. 105.]
13. Two equal circles touch one another externally, and through the point of contact two chords are drawn, one in each circle, at right angles to each other: shew that the straight line joining their other extremities is equal to the diameter of either circle.
14. Straight lines are drawn from a given external point to the circumference of a circle: find the locus of their middle points. [Ex. 3, p. 105.]
15. Two equal segments of circles are described on opposite sides of the same chord $A B$; and through O, the middle point of $A B$, any straight line POQ is drawn, intersecting the arcs of the segments at P and Q : shew that $O P=O Q$.
II. ON THE TANGENT AND THE CONTACT OF CIRCLES.
[See Propositions 11, 12, 16, 17, 18, 19.]
16. All equal chords placed in a given circle touch a fixed concentric circle.
17. If from an external point two tangents are drawn to a circle, the angle contained by them is double the angle contained by the chord of contact and the diameter drawn through one of the points of contact.
18. Two circles touch one another externally, and through the point of contact a straight line is drawn terminated by the circumferences : shew that the tangents at its extremities are parallel.
19. Two circles intersect, and through one point of section any straight line is drawn terminated by the circumferences : shew that the angle between the tangents at its extremities is equal to the angle between the tangents at the point of section.
20. Shew that two parallel tangents to a circle intercept on any third tangent a segment which subtends a right angle at the centre.
21. Two tangents are drawn to a given circle from a fixed external point A, and any third tangent cuts them produced at P and Q: shew that PQ subtends a constant angle at the centre of the circle.
22. In any quadrilateral circumscribed about a circle, the sum of one pair of opposite sides is equal to the sum of the other pair.
23. If the sum of one pair of opposite sides of a quadrilateral is equal to the sum of the other pair, shew that a circle may be inscribed in the figure.
[Bisect two adjacent angles of the figure, and so describe a circle to touch three of its sides. Then prove indirectly by means of the last exercise that this circle must also touch the fourth side.]
24. Two circles touch one another internally, the centre of the outer being within the inner circle: shew that of all chords of the outer circle which touch the inner, the greatest is that which is perpendicular to the straight line joining the centres.
25. In any triangle, if a circle is described from the middle point of one side as centre and with a radius equal to half the sum of the other two sides, it will touch the circles described on these sides as diameters.
26. Through a given point, draw a straight line to cut a circle, so that the part intercepted by the circumference may be equal to a given straight line.

In order that the problem may be possible, between what limits must the given line lie, when the given point is (i) without the circle, (ii) within it?
12. A series of circles touch a given straight line at a given point: shew that the tangents to them at the points where they cut a given parallel straight line all touch a fixed circle, whose centre is the given point.
13. If two circles touch one another internally, and any third circle be described touching one internally and the other externally; then the sum of the distances of the centre of this third circle from the centres of the two given circles is constant.
14. Find the locus of points such that the pairs of tangents drawn from them to a given circle contain a constant angle.
15. Find a point such that the tangents drawn from it to two given circles may be equal to two given straight lines. When is this impossible?
16. If three circles touch one another two and two ; prove that the tangents drawn to them at the three points of contact are concurrent and equal.

The Common Tangents to Two Circles.

17. To draw a common tangent to two circles.

First. When the given circles are external to one another, or when they intersect.

Let A be the centre of the greater circle, and B the centre of the less.

From A, with radius equal to the diffee of the radii of the given circles, describe a circle: and from B draw $B C$ to touch the last drawn circle. Join AC, and produce it to meet the
 greater of the given circles atD.

Through B draw the radius BE par ${ }^{1}$ to $A D$, and in the same direction.
Join DE.

Then DE shall be a common tangent to the two given circles.
For since $A C=$ the diffee between $A D$ and $B E$,
Constr.

$$
\therefore C D=B E
$$

and $C D$ is par ${ }^{1}$ to $B E$;
Oonstr.
\therefore DE is equal and par ${ }^{1}$ to CB.
I. 33.

But since $B C$ is a tangent to the circle at C,

$$
\therefore \text { the } \angle A C B \text { is a rt. angle ; }
$$

iII. 18.
hence each of the angles at D and E is a rt. angle: I. 29.
$\therefore D E$ is a tangent to both circles. Q.E.F.

It follows from hypothesis that the point B is outside the circle used in the construction :
\therefore two tangents such as $B C$ may always be drawn to it from B; hence two common tangents may always be drawn to the given circles by the above method. These are called the direct common tangents.

Secondly. When the given circles are external to one another and do not intersect, two more common tangents may be drawn.

For, from centre A, with a radius equal to the sum of the radii of the given circles, describe a circle.

From B draw a tangent to this circle; and proceed as before, but draw $B E$ in the direction opposite to $A D$.

It follows from hypothesis that B is external to the circle used in the construction ;
\therefore two tangents may be drawn to it from B.
Hence two more common tangents may be drawn to the given circles: these will be found to pass between the given circles, and are called the transverse common tangents.

Thus, in general, four common tangents may be drawn to two given circles.

The student should investigate for himself the number of common tangents which may be drawn in the following special cases, noting in each case where the general construction fails, or is modified :-
(i) When the given circles intersect:
(ii) When the given circles have external contact:
(iii) When the given circles have internal contact :
(iv) When one of the given circles is wholly within the other.
18. Draw the direct common tangents to two equal circles.
19. If the two direct, or the two transverse, common tangents are drawn to two circles, the parts of the tangents intercepted between the points of contact are equal.
20. If four common tangents are drawn to two circles external to one another; shew that the two direct, and also the two transverse, tangents intersect on the straight line which joins the centres of the circles.
21. Two given circles have external contact at A, and a direct common tangent is drawn to touch them at P and Q : shew that PQ subtends a right angle at the point A.
22. Two circles have external contact at A, and a direct common tangent is drawn to touch them at P and Q : shew that a circle described on $P Q$ as diameter is touched at A by the straight line which joins the centres of the circles.
23. Two circles whose centres are C and C^{\prime} have external contact at A, and a direct common tangent is drawn to touch them at P and Q : shew that the bisectors of the angles PCA, QCA meet at right angles in PQ. And if R is the point of intersection of the bisectors, shew that RA is also a common tangent to the circles.
24. Two circles have external contact at A, and a direct common tangent is drawn to touch them at P and Q : shew that the square on $P Q$ is equal to the rectangle contained by the diameters of the circles.
25. Draw a tangent to a given circle, so that the part of it intercepted by another given circle may be equal to a given straight line. When is this impossible?
26. Draw a secant to two given circles, so that the parts of it intercepted by the circumferences may be equal to two given straight lines.

Problems on Tangency.

Obs. The following exercises are solved by the Method of Intersection of Loci, explained on page 125.

The student should begin by making himself familiar with the following loci.
(i) The locus of the centres of circles which pass through two given points.
(ii) The locus of the centres of circles which touch a given straight line at a given point.
(iii) The locus of the centres of circles which touch a given circle at a given point.
(iv) The locus of the centres of circles which touch a given straight line, and have a given radius.
(v) The locus of the centres of circles which touch a given circle, and have a given radius.
(vi) The locus of the centres of circles which touch two given straight lines.

In each exercise the student should investigate the limits and relations among the data, in order that the problem may be possible.
27. Describe a circle to touch three given straight lines.
28. Describe a circle to pass through a given point, and touch a given straight line at a given point.
29. Describe a circle to pass through a given point, and touch a given circle at a given point.
30. Describe a circle of given radius to pass through a given point, and touch a given straight line.
31. Describe a circle of given radius to touch two given circles.
32. Describe a circle of given radius to touch two given straight lines.
33. Describe a circle of given radius to touch a given circle and a given straight line.
34. Describe two circles of given radii to touch one another and a given straight line, on the same side of it.
35. If a circle touches a given circle and a given straight line, shew that the points of contact and an extremity of the diameter of the given circle at right angles to the given line are collinear.
36. To describe a circle to touch a given circle, and also to touch a given straight line at a given point.

Let $D E B$ be the given circle, PQ the given straight line, and A the given point in it.

It is required to describe a circle to touch the \odot DEB, and also to touch PQ at A .

At A draw $A F$ perp. to $P Q: 1.11$. then the centre of the required circle must lie in AF. InI. 19.

Find C, the centre of the \odot DEB, III. $\cdot 1$. and draw a diameter $B D$ perp. to PQ:

join A to one extremity D, cutting the $O^{\text {ee }}$ at E.

Join CE, and produce it to cut AF at F.
Then F shall be the centre, and FA the radius of the required circle.
[Supply the proof : and shew that a second solution is obtained by joining $A B$, and producing it to meet the $O^{\text {ce }}$. Also distinguish between the nature of the contact of the circles, when $P Q$ cuts, touches, or is without the given circle.]
37. Describe a circle to touch a given straight line, and to touch a given circle at a given point.
38. Describe a circle to touch a given circle, have its centre in a given straight line, and pass through a given point in that straight line.
[For other problems of the same class see page 253.]

Orthogonal Circles.

Definition. Circles which intersect at a point, so that the two tangents at that point are at right angles to one another, are said to be orthogonal, or to cut one another orthogonally.
39. In two intersecting circles the angle between the tangents at one point of intersection is equal to the angle between the tangents at the other.
40. If two circles cut one another orthogonally, the tangent to each circle at a point of intersection will pass through the centre of the other circle.
41. If two circles cut one another orthogonally, the square on the distance between their centres is equal to the sum of the squares on their radii.
42. Find the locus of the centres of all circles which cut a given circle orthogonally at a given point.
43. Describe a circle to pass through a given point and cut a given circle orthogonally at a given point.

III. ON ANGLES IN SEGMENTS, AND ANGLES AT THE CENTRES AND CIRCUMFERENCES OF CIRCLES.

[See Propositions 20, 21, 22; 26, 27, 28, 29 ; 31, 32, 33, 34.]

1. If two chords intersect within a circle, they form an angle equal to that at the centre, subtended by half the sum of the arcs they cut off.

Let $A B$ and $C D$ be two chords, intersecting at E within the given $\odot A D B C$.
Then shall the \angle AEC be equal to the angle at the centre, subtended by half the sum of the $\operatorname{arcs} \mathrm{AC}, \mathrm{BD}$.
Join AD.

Then the ext. $\angle A E C=$ the sum of the int. opp. \angle^{8} EDA, EAD ;

that is, the sum of the \angle^{s} CDA, BAD.
But the $\angle^{8} C D A, B A D$ are the angles at the $\bigcirc^{\text {ce }}$ subtended by the arcs $A C, B D$;
\therefore their sum $=$ half the sum of the angles at the centre subtended by the same ares ;
or, the $\angle A E C=$ the angle at the centre subtended by half the sum of the ares $A C, B D$.
Q. E. D.
2. If two chords when produced intersect outside a circle, they form an angle equal to that at the centre subtended by half the difference of the arcs they cut off.
3. The sum of the arcs cut off by two chords of a circle at right angles to one another is equal to the semi-circumference.
4. $A B, A C$ are any two chords of a circle; and P, Q are the middle points of the minor ares cut off by them : if $P Q$ is joined, cutting $A B$ and $A C$ at X, Y, shew that $A X=A Y$.
5. If one side of a quadrilateral inscribed in a circle is produced, the exterior angle is equal to the opposite interior angle.
6. If two circles intersect, and any straight lines are drawn, one through each point of section, terminated by the circumferences; shew that the chords which join their extremities towards the same parts are parallel.
7. $A B C D$ is a quadrilateral inscribed in a circle; and the opposite sides $A B, D C$ are produced to meet at P, and $C B, D A$ to meet at Q : if the circles circumscribed about the triangles PBC, QAB intersect at R, shew that the points P, R, Q are collinear.
8. If a circle is described on one of the sides of a right-angled triangle, then the tangent drawn to it at the point where it cuts the hypotenuse bisects the other side.
9. Given three points not in the same straight line: shew how to find any number of points on the circle which passes through them, without finding the centre.
10. Through any one of three given points not in the same straight line, draw a tangent to the circle which passes through them, without finding the centre.
11. Of two circles which intersect at A and B, the circumference of one passes through the centre of the other: from A any straight line is drawn to cut the first at C, the second at D; shew that $C B=C D$.
12. Two tangents $A P, A Q$ are drawn to a circle, and B is the middle point of the arc $P Q$, convex to A. Shew that $P B$ bisects the angle APQ.
13. Two circles intersect at A and B; and at A tangents are drawn, one to each circle, to meet the circumferences at C and D; if $C B, B D$ are joined, shew that the triangles $A B C, D B A$ are equiangular to one another.
14. Two segments of circles are described on the same chord and on the same side of it; the extremities of the common chord are joined to any point on the arc of the exterior segment: shew that the arc intercepted on the interior segment is constant.
H.S.E.
15. If a series of triangles are drawn standing on a fixed base, and having a given vertical angle, show that the bisectors of the vertical angles all pass through a fixed point.
16. $A B C$ is a triangle inscribed in a circle, and E the middle point of the are subtended by $B C$ on the side remote from A : if through E a diameter $E D$ is drawn, shew that the angle DEA is half the difference of the angles at B and C. [See Ex. 7, p. 109.]
17. If two circles touch each other internally at a point A, any chord of the exterior circle which touches the interior is divided at its point of contact into segments which subtend equal angles at A.
18. If two circles touch one another internally, and a straight line is drawn to cut them, the segments of it intercepted between the circumferences subtend equal angles at the point of contact.

The Orthocentre of a Triangle.

19. The perpendiculars drawn from the vertices of a triangle to the opposite sides are concurrent.

In the $\triangle A B C$, let $A D, B E$ be the pert ${ }^{s}$ drawn from A and B to the opposite sides ; and let them intersect at O. Join CO; and produce it to meet AB at F.

It is required to shew that CF is perp. to $A B$.

Join DE.

Then, because the \angle^{8} OEC, ODC are rt. angles,
\therefore the points O, E, C, D are concyclic :
\therefore the $\angle D E C=$ the $\angle D O C$, in the same segment ; $=$ the vert. opp. $\angle F O A$.
Again, because the $\angle{ }^{8} A E B, A D B$ are r. angles,
Hyp.
\therefore the points A, E, D, B are concyclic :
\therefore the $\angle D E B=$ the $\angle D A B$, in the same segment.
\therefore the sum of the $\angle^{8} F O A, F A O=$ the sum of the $\angle^{8} D E C, D E B$ =a rt. angle :

Нур.
\therefore the remaining $\angle \mathrm{AFO}=$ a rt. angle : I. 32 . that is, $C F$ is perp. to $A B$.
Hence the three pert ${ }^{3} A D, B E, C F$ meet at the point O. Q.E.D.
[For an Alternative Proof see p. 114.]

Definitions.

(i) The intersection of the perpendiculars drawn from the vertices of a triangle to the opposite sides is called its orthocentre.
(ii) The triangle formed by joining the feet of the perpendiculars is called the pedal or orthocentric triangle.
20. In an acute-angled triangle the perpendiculars drawn from the rertices to the opposite sides bisect the angles of the pedal triangle through which they pass.

In the acute-angled $\triangle A B C$, let $A D$, $B E, C F$ be the perp ${ }^{8}$ drawn from the vertices to the opposite sides, meeting at the orthocentre O; and let DEF be the pedal triangle.
Then shall AD, BE, CF bisect respectively the \angle^{8} FDE, DEF, EFD.
For, as in the last theorem, it may
 be shewn that the points O, D, C, E are concyclic ;
\therefore the $\angle O D E=$ the $\angle O C E$, in the same segment.
Similarly the points O, D, B, F are concyclic ;
\therefore the $\angle \mathrm{ODF}=$ the $\angle \mathrm{OBF}$, in the same segment.
But the $\angle O C E=$ the $\angle O B F$, each being the comp ${ }^{t}$ of the $\angle B A C$.
\therefore the $\angle O D E=$ the $\angle O D F$.
Similarly it may be shewn that the $\angle{ }^{8}{ }^{8} D E F, E F D$ are bisected by $B E$ and CF.
Q.E.D.

Corollary. (i) Every two sides of the pedal triangle are equally inclined to that side of the original triangle in which they meet.

For the $\angle E D C=$ the compt of the $\angle O D E$
$=$ the comp ${ }^{t}$ of the $\angle O C E$
$=$ the $\angle B A C$.
Similarly it may be shewn that the $\angle F D B=$ the $\angle B A C$, \therefore the $\angle E D C=$ the $\angle F D B=$ the $\angle A$.
In like manner it may be proved that

$$
\begin{aligned}
& \text { the } \angle \mathrm{DEC}=\text { the } \angle \mathrm{FEA}=\text { the } \angle \mathrm{B}, \\
& \text { and the } \angle \mathrm{DFB}=\text { the } \angle \mathrm{EFA}=\text { the } \angle \mathrm{C} .
\end{aligned}
$$

Corollary. (ii) The triangles DEC, AEF, DBF are equiangular to one another and to the triangle $A B C$.

Note. If the angle BAC is obtuse, then the perpendiculars BE, CF bisect externally the corresponding angles of the pedal triangle.
21. In any triangle, if the perpendiculars drawn from the vertices on the opposite sides are produced to meet the circumscribed circle, then each side bisects that portion of the line perpendicular to it which lies between the orthocentre and the circumference.

Let $A B C$ be a triangle in which the perpendiculars $A D, B E$ are drawn, intersecting at O the orthocentre, and let AD be produced to meet the $O^{\text {ce }}$ of the circumscribing circle at G.

> Then shall DO = DG. Join BG.

Then in the two \triangle OEA, ODB, the $\angle \mathrm{OEA}=$ the $\angle \mathrm{ODB}$, being rt. angles;
 and the $\angle E O A=$ the vert. opp. $\angle D O B$;
\therefore the remaining $\angle E A O=$ the remaining $\angle D B O$. I. 32 .

> But the $\angle C A G=$ the $\angle C B G$, in the same segment; \therefore the $\angle D B O=$ the $\angle D B G$. Then in the $\triangle D B O, D B G$, Because $\left\{\begin{array}{cc}\text { the } \angle D B O=\text { the } \angle D B G, \\ \text { the } \angle B D O=\text { the } \angle B D G, \\ \text { and } B D \text { is common; } & \text { Proved. } \\ \therefore D O=D G . & \\ & \text { I. } 26 .\end{array}\right.$
22. In an acute-angled triangle the three sides are the external bisectors of the angles of the pedal triangle: and in an obtuse-angled triangle the sides containing the obtuse angle are the internal bisectors of the corresponding angles of the pedal triangle.
23. If O is the orthocentre of the triangle ABC , shew that the xngles BOC, BAC are supplementary.
24. If O is the orthocentre of the triangle ABC , then any one of the four points $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ is the orthocentre of the triangle whose vertices are the other three.
25. The three circles which pass through two vertices of a triangle and its orthocentre are each equal to the circle circumscribed about the triangle.
26. D, E are taken on the circumference of a semicircle described on a given straight line $A B$: the chords $A D, B E$ and $A E, B D$ intersect (produced if necessary) at F and G : shew that $F G$ is perpendicular to $A B$.
27. $A B C D$ is a parallelogram ; $A E$ and $C E$ are drawn at right angles to $A B$, and CB respectively : shew that ED, if produced, will be perpendicular to AC.
28. $A B C$ is a triangle, O is its orthocentre, and $A K$ a diameter of the circumscribed circle : shew that BOCK is a parallelogram.
29. The orthocentre of a triangle is joined to the middle point of the base, and the joining line is produced to meet the circumseribed circle: prove that it will meet it at the same point as the diameter which passes through the vertex.
30. The perpendicular from the vertex of a triangle on the base, and the straight line joining the orthocentre to the middle point of the base, are produced to meet the circumscribed circle at P and Q : shew that PQ is parallel to the base.
31. The distance of each vertex of a triangle from the orthocentre is double of the perpendicular drawn from the centre of the circumscribed circle on the opposite side.
32. Three circles are described each passing through the orthocentre of a triangle and two of its vertices: shew that the triangle formed by joining their centres is equal in all respects to the original triangle.
33. $A B C$ is a triangle inscribed in a circle, and the bisectors of its angles which intersect at O are produced to meet the circumference in PQR : shew that O is the orthocentre of the triangle PQR.
34. Construct a triangle, having given a vertex, the orthocentre, and the centre of the circumscribed circle.

Locr.

35. Given the base and vertical angle of a triangle, find the locus. of its orthocentre.

Let $B C$ be the given base, and X the given angle; and let BAC be any triangle on the base $B C$, having its vertical $\angle A$ equal to the $\angle X$.

Draw the perp ${ }^{\text {s }} \mathrm{BE}, \mathrm{CF}$, intersecting at the orthocentre 0 .

It is required to find the locus of O .
Since the \angle^{s} OFA, OEA are rt. angles,

\therefore the points $\mathrm{O}, \mathrm{F}, \mathrm{A}, \mathrm{E}$ are concyclic;
\therefore the $\angle F O E$ is the supplement of the $\angle A$:
III. 22.
\therefore the vert. opp. $\angle B O C$ is the supplement of the $\angle A$.
But the $\angle \mathrm{A}$ is constant, being always equal to the $\angle \mathrm{X}$;
\therefore its supplement is constant;
that is, the $\triangle B O C$ has a fixed base, and constant vertical angle; hence the locus of its vertex O is the arc of a segment of which BC is the chord.
[See Corollary p. 201.]
36. Given the base and vertical angle of a triangle, find the locus of the intersection of the bisectors of its angles.

Let BAC be any triangle on the given base $B C$, having its vertical angle equal to the given $\angle \mathrm{X}$; and let $\mathrm{AI}, \mathrm{BI}, \mathrm{Cl}$ be the bisectors of its angles. [See Ex. 2, p. 111.] It is required to find the locus of the point 1 .

Denote the angles of the $\triangle A B C$ by $\mathrm{A}, \mathrm{B}, \mathrm{C}$; and let the $\angle \mathrm{BIC}$ be denoted by 1 .

Then from the $\triangle B I C$,
(i)

$$
\mathrm{I}+\frac{1}{2} \mathrm{~B}+\frac{1}{2} \mathrm{C}=\text { two rt. angles, }
$$

I. 32.
and from the $\triangle A B C$,

$$
\mathrm{A}+\mathrm{B}+\mathrm{C}=\text { two } \mathrm{rt} . \text { angles ; } \quad \text { I. } 32 .
$$

(ii) so that $\frac{1}{2} A+\frac{1}{2} B+\frac{1}{2} C=$ one rt. angle,
\therefore, taking the differences of the equals in (i) and (ii),

$$
\begin{aligned}
& I-\frac{1}{2} A=\text { one rt. angle : } \\
& I=\text { one rt. angle }+\frac{1}{2} A .
\end{aligned}
$$

But A is constant, being always equal to the $\angle X$;
$\therefore \quad I$ is constant :
\therefore the locus of 1 is the are of a segment on the fixed chord BC.
37. Given the base and vertical angle of a triangle, find the locus of the centroid, that is, the intersection of the medians.

Let BAC be any triangle on the given base $B C$, having its vertical angle equal to the given angle S; let the medians $\mathrm{AX}, \mathrm{BY}, \mathrm{CZ}$ intersect at the centroid G . [See Ex. 4, p. 113.] It is required to find the locus of the point G .

Through G draw GP, GQ par ${ }^{1}$ to $A B$ and $A C$ respectively.

Then ZG is a third part of ZC ;
Ex. 4, p. 113, and since GP is par ${ }^{1}$ to $Z B$, $\therefore B P$ is a third part of BC. Ex. 19, p. 107.
Similarly QC is a third part of BC;
$\therefore P$ and Q are fixed points.
Now since PG, GQ are par ${ }^{1}$ respectively to $B A, A C$, Constr.

$$
\therefore \text { the } \angle \mathrm{PGQ}=\text { the } \angle \mathrm{BAC} \text {, }
$$

$$
\text { I. } 29 .
$$

that is, the $\angle P G Q$ is constant;
\therefore the locus of G is the arc of a segment on the fixed chord $P Q$.
Note. In this problem the points A and G move on the arcs of similar segments.
38. Given the base and the vertical angle of a triangle; find the locus of the intersection of the bisectors of the exterior base angles.
39. Through the extremities of a given straight line $A B$ any two parallel straight lines $A P, B Q$ are drawn; find the locus of the intersection of the bisectors of the angles PAB, QBA.
40. Find the locus of the middle points of chords of a circle drawn through a fixed point.

Distinguish between the cases when the given point is within, on, or without the circumference.
41. Find the locus of the points of contact of tangents drawn from a fixed point to a system of concentric circles.
42. Find the locus of the intersection of straight lines which pass through two fixed points on a circle and intercept on its circumference an arc of constant length.
43. A and B are two fixed points on the circumference of a circle, and $P Q$ is any diameter : find the locus of the intersection of $P A$ and QB.
44. $B A C$ is any triangle described on the fixed base $B C$ and laving a constant vertical angle ; and $B A$ is produced to P, so that $B P$ is equal to the sum of the sides containing the vertical angle: find the locus of P.
45. $A B$ is a fixed chord of a circle, and $A C$ is a moveable chord passing through A : if the parallelogram $C B$ is completed, find the locus of the intersection of its diagonals.
46. A straight rod PQ slides between two rulers placed at right angles to one another, and from its extremities $P X, Q X$ are drawn perpendicular to the rulers: find the locus of X.
47. Two circles whose centres are C and D, intersect at A and B : through A, any straight line PAQ is drawn terminated by the circumferences ; and PC, QD intersect at X : find the locus of X, and shew that it passes through B. [Ex. 9, p. 234.]
48. Two circles intersect at A and B, and through P, any point on the circumference of one of them, two straight lines PA, PB are drawn, and produced if necessary, to cut the other circle at X and Y : find the locus of the intersection of $A Y$ and $B X$.
49. Two circles intersect at A and B; HAK is a fixed straight line drawn through A and terminated by the circumferences, and PAQ is any other straight line similarly drawn : find the locus of the intersection of HP and QK.
50. Two segments of circles are on the same chord $A B$ and on the same side of it; and P and Q are any points one on each arc : find the locus of the intersection of the bisectors of the angles PAQ, PBQ.
51. Two circles intersect at A and B; and through A any straight line PAQ is drawn terminated by the circumferences: find the locus of the middle point of PQ .

Miscellaneous Examples on Angles in a Circle.

52. $A B C$ is a triangle, and circles are drawn through B, C, cutting the sides in $P, Q, P^{\prime}, Q^{\prime}, \ldots$: shew that $P Q, P^{\prime} Q^{\prime} \ldots$ are parallel to one another and to the tangent drawn at A to the circle circumscribed about the triangle.
53. Two circles intersect at B and C, and from any point A, on the circumference of one of them, $A B, A C$ are drawn, and produced if necessary, to meet the other at D and E : shew that $D E$ is parallel to the tangent at A.
54. A secant PAB and a tangent PT are drawn to a circle from an external point P; and the bisector of the angle $A T B$ meets $A B$ at C : shew that PC is equal to PT.
55. From a point A on the circumference of a circle two chords $A B, A C$ are drawn, and also the diameter $A F$: if $A B, A C$ are produced to meet the tangent at F in D and E, shew that the triangles $A B C, A E D$ are equiangular to one another.
56. O is any point within a triangle $A R O$, and $O D, O E, O F$ are drawn perpendicular to $B C, C A, A B$ respectively: shew that the angle $B O C$ is equal to the sum of the angles $B A C, E D F$.
57. If two tangents are drawn to a circle from an external point, shew that they contain an angle equal to the difference of the angles in the segments cut off by the chc:d of contact.
58. Two circles intersect, and through a point of section a straight line is drawn bisecting the angle between the diameters through that point: shew that this straight line cuts off similar segments from the two circles.
59. Two equal circles intersect at A and B; and from centre A, with any radius less than $A B$ a third circle is described cutting the given circles on the same side of $A B$ at C and D : shew that the points B, C, D are collinear.
60. $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are two triangles inscribed in a circle, so that $A B, A C$ are respectively parallel to $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$: shew that B^{\prime} is parallel to $B^{\prime} C$.
61. Two circles intersect at A and B, and through A two straight lines HAK, PAQ are drawn terminated by the circumferences : if $H P$ and KQ intersect at X, shew that the points H, B, K, X are concyclic.
62. Describe a circle touching a given straight line at a given point, so that tangents drawn to it from two fixed points in the given line may be parallel. [See Ex. 10, p. 197.]
63. C is the centre of a circle, and CA, CB two fixed radii : if from any point P on the are $A B$ perpendiculars $P X, P Y$ are drawn to $C A$ and $C B$, shew that the distance $X Y$ is constant.
64. $A B$ is a chord of a circle, and P any point in its circumference: $P M$ is drawn perpendicular to $A B$, and $A N$ is drawn perpendicular to the tangent at P : shew that $M N$ is parallel to $P B$.
65. P is any point on the circumference of a circle of which $A B$ is a fixed diameter, and $P N$ is drawn perpendicular to $A B$; on $A N$ and $B N$ as diameters circles are described, which are cut by AP, BP at X and Y : shew that $X Y$ is a common tangent to these circles.
66. Upon the same chord and on the same side of it three segments of circles are described containing respectively a given angle, its supplement and a right angle: shew that the intercept made by the two former segments upon any straight line drawn through an extremity of the given chord is bisected by the latter segment.
67. Two straight lines of indefinite length touch a given circle, and any chord is drawn so as to be bisected by the chord of contact: if the former chord is produced, shew that the intercepts between the circumference and the tangents are equal.
68. Two circles intersect one another: through one of the points of section draw a straight line of given length terminated by the circumferences.
69. On the three sides of any triangle equilateral triangles are described remote from the given triangle: shew that the circles described about them intersect at a point.
70. On $B C, C A, A B$ the sides of a triangle $A B C$, any points P, Q, R are taken; shew that the circles described about the triangles $A Q R, B R P, C P Q$ meet in a point.
71. Find a point within a triangle at which the sides subtend equal angles.
72. Describe an equilateral triangle so that its sides may pass through three given points.
73. Describe a triangle equal in all respects to a given triangle, and having its sides passing through three given points.

Simson's Line.

74. If from any point on the circumference of the circle circumscribed about a triangle, perpendiculars are drawn to the three sides, the feet of these perpendiculars are collinear.

Let P be any point on the $O^{c e}$ of the circle circumscribed about the $\triangle A B C$; and let PD, PE, PF be the perp ${ }^{s}$ drawn from P to the three sides.

It is required to prove that the points D, E, F are collinear.

Join FD and DE :

then FD and DE shall be in the same st. line.

Join PB, PC.
Because the \angle^{8} PDB, PFB are rt. angles,
\therefore the points P, D, B, F are concyclic :
\therefore the $\angle P D F=$ the $\angle P B F$, in the same segment. III. 21.
But since BACP is a quad ${ }^{1}$ inscribed in a circle, having one of its sides $A B$ produced to F,
\therefore the ext. $\angle \mathrm{PBF}=$ the opp. int. $\angle \mathrm{ACP} . E x .3, p .202$. \therefore the $\angle P D F=$ the $\angle A C P$.

To each add the $\angle P D E$:
then the $\angle^{8} P D F, P D E=$ the $\angle^{8} E C P, P D E$.
But since the $\angle{ }^{8} P D C, P E C$ are rt. angles,
\therefore the points P, D, E, C are concyclic ;
\therefore the $\angle^{8} E C P, P D E$ together = two rt. angles:
\therefore the \angle^{s} PDF, PDE together = two rt. angles ;
$\therefore F D$ and $D E$ are in the same st. line;
I. 14.
that is, the points D, E, F are collinear.
Q.E.D.
[The line FDE is called the Pedal or Simson's Line of the triangle $A B C$ for the point P; though the tradition attributing the theorem to Robert Simson has been recently shaken by the researches of Dr. J. S. Mackay.]
75. $A B C$ is a triangle inscribed in a circle ; and from any point P on the circumference $P D, P F$ are drawn perpendicular to $B C$ and $A B$: if $F D$, or $F D$ produced, cuts $A C$ at E, shew that $P E$ is perpendicular to AC.
76. Find the locus of a point which moves so that if perpendiculars are drawn from it to the sides of a given triangle, their feet are collinear.
77. $A B C$ and $A B^{\prime} C^{\prime}$ are two triangles having a common vertical angle, and the circles circumscribed about them meet again at P; shew that the feet of perpendiculars drawn from P to the four lines $A B, A C, B C, B^{\prime} C^{\prime}$ are collinear.
78. A triangle is inscribed in a circle, and any point P on the circumference is joined to the orthocentre of the triangle: shew that this joining line is bisected by the perdal of the point P.
IV. ON THE CIRCLE IN CONNECTION WITH RECTANGLES.

[See Propositions 35, 36, 37.]

1. If from any external point P two tangents are drawn to a given circle whose centre is O , and if OP meets the chord of contact at Q ; then the rectangle OP, OQ is equal to the square on the radius.

Let PH, PK be tangents, drawn from the external point P to the \odot HAK, whose centre is O ; and let OP meet HK the chord of contact at Q, and the $O^{\text {ce }}$ at A. Then shall the rect. $\mathrm{OP}, \mathrm{OQ}=$ the sq. on OA.
On HP as diameter describe a circle : this circle must pass through Q, since the $\angle H Q P$ is a rt. angle.
Join OH.

Then since PH is a tangent to the \odot HAK,

\therefore the $\angle \mathrm{OHP}$ is a rt. angle.

> And since $H P$ is a diameter of the $\odot H Q P$, $\therefore O H$ touches the $\odot H Q P$ at H.
III. 16.
\therefore the rect. $\mathrm{OP}, \mathrm{OQ}=$ the sq. on OH , $=$ the sq. on OA.
III. 36.
Q.E.D.
2. $A B C$ is a triangle, and $A D, B E, C F$ the perpendiculars drawn from the vertices to the opposite sides, meeting in the orthocentre O : shew that the rect. $A O, O D=$ the rect. $B O, O E=$ the rect. $C O, O F$.
3. $A B C$ is a triangle, and $A D, B E$ the perpendiculars drawn from A and B on the opposite sides: shew that the rectangle $C A, C E$ is equal to the rectangle $C B, C D$.
4. $A B C$ is a triangle right-angled at C, and from D, any point in the hypotenuse $A B$, a straight line $D E$ is drawn perpendicular to $A B$ and meeting $B C$ at E : shew that the square on $D E$ is equal to the difference of the rectangles $A D, D B$ and $C E, E B$.
5. From an external point P two tangents are drawn to a given circle whose centre is O, and $O P$ meets the chord of contact at Q : shew that any circle which passes through the points P, Q will cut the given circle orthogonally. [See Def. p. 240.]
6. A series of circles pass through two given points, and from a fixed point in the common chord produced tangents are drawn to all the circles: shew that the points of contact lie on a circle which cuts all the given circles orthogonally.
7. All circles which pass through a fixed point, and cut a given circle orthogonally, pass also through a second fixed point.
8. Find the locus of the centres of all circles which pass through a given point and cut a given circle orthogonally.
9. Describe a circle to pass through two given points and cut a given circle orthogonally.
10. A, B, C, D are four points taken in order on a given straight line: find a point O between B and C such that the rectangle $O A, O B$ may be equal to the rectangle $O C, O D$.
11. $A B$ is a fixed diameter of a circle, and $C D$ a fixed straight line of indefinite length cutting AB or AB produced at right angles; any straight line is drawn through. A to cut CD at P and the circle at Q: shew that the rectangle AP, AQ is constant.
12. $A B$ is a fixed diameter of a circle, and $C D$ a fixed chord at right angles to $A B$; any straight line is drawn through A to cut $C D$ at P and the circle at Q : shew that the rectangle $A P, A Q$ is equal to the square on AC.
13. A is a fixed point, and CD a fixed straight line of indefinite length; AP is any straight line drawn through A to meet CD at P ; and in AP a point Q is taken such that the rectangle AP, AQ is constant: find the locus of \mathbf{Q}.
14. Two circles intersect orthogonally, and tangents are drawn from any point on the circumference of one to touch the other: prove that the first circle passes through the middle point of the chord of contact of the tangents. [Ex. 1, p. 251.]
15. A semicircle is described on $A B$ as diameter, and any two chords $A C, B D$ are drawn intersecting at P : shew that

$$
A B^{2}=A C \cdot A P+B D \cdot B P .
$$

16. Two circles intersect at B and C, and the two direct common tangents $A E$ and $D F$ are drawn : if the common chord is produced to meet the tangents at G and H, shew that $G H^{2}=A E^{2}+B C^{2}$.
17. If from a point P, without a circle, $P M$ is drawn perpendicular to a diameter $A B$, and also a secant $P C D$, shew that

$$
P M^{2}=P C \cdot P D+A M \cdot M B .
$$

18. Three circles intersect at D, and their other points of intersection are $A, B, C ; A D$ cuts the circle $B D C$ at E, and $E B, E C$ cut the circles $A D B, A D C$ respectively at F and G : show that the points F, A, G are collinear, and F, B, C, G concyclic.
19. A semicircle is described on a given diameter BC, and from B and C any two chords $B E, C F$ are drawn intersecting within the semicircle at $O ; B F$ and CE are produced to meet at A : shew that the sum of the squares on $A B, A C$ is equal to twice the square on the tangent from A together with the square on $B C$.
20. X and Y are two fixed points in the diameter of a circle equidistant from the centre C : through X any chord PXQ is drawn, and its extremities are joined to Y : shew that the sum of the squares on the sides of the triangle PYQ is constant. [See p. 161, Ex. 24.]

Problems on Tangency.

21. To describe a circle to pass through two given points and to touch a given straight line.

Let A and B be the given points, and $C D$ the given st. line.

It is required to describe a circle to pass through A and B and to touch CD.

Join BA, and produce it to meet $C D$ at P.

Describe a square equal to the
 rect. PA, PB; II. 14. and from $P D$ (or $P C$) cut off $P Q$ equal to a side of this square.

Through A, B, and Q describe a circle. Ex. 4, p. 171. Then since the rect. $P A, P B=$ the sq. on $P Q$, \therefore the $\odot A B Q$ touches $C D$ at Q.
iII. 37.
Q.E.F.

Notes. (i) Since PQ may be taken on either side of P, it is clear that there are in general two solutions of the problem.
(ii) When $A B$ is parallel to the given line $C D$, the above method is not applicable. In this case a simple construction follows from iII. 1, Cor. and iII. 16, and it will be found that only one solution exists.
22. To describe a circle to pass through two given points and to touch a given circle.

Let A and B be the given points, and CRP the given circle.
It is required to describe α circle to pass through A and B , and to touch the $\odot \mathrm{CRP}$.

Through A and B describe any circle to cut the given circle at P and Q.

Join $A B, P Q$, and pro-
 duce them to meet at D.

From D draw $D C$ to touch the given circle, and let C be the point of contact.

Then the circle described through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ will touch the given circie.
For, from the $\odot A B Q P$, the rect. $D A, D B=$ the rect. $D P, D Q:$ and from the $\odot P Q C$, the rect. $D P, D Q=$ the sq. on $D C$; III. 36.

$$
\therefore \text { the rect. DA, } D B=\text { the sq. on } D C \text { : }
$$

\therefore DC touches the $\odot A B C$ at C.
III. 37.

But DC touches the \odot PQC at C ;
Constr.
\therefore the \odot ABC touches the given circle, and it passes through the given points A and B.
Q.E.F.

Note. (i) Since two tangents may be drawn from D to the given circle, it follows that there will be two solutions of the problem.
(ii) The general construction fails when the straight line bisecting $A B$ at right angles passes through the centre of the given circle : the problem then becomes symmetrical, and the solution is obvious.
23. To describe a circle to pass through a given point and to touch two given straight lines.

Let P be the given point, and $A B, A C$ the given straight lines. It is required to describe a circle to pass through P and to touch $A B, A C$.

Now the centre of every circle which touches $A B$ and $A C$ must lie on the bisector of the $\angle B A C$. Ex. 7, p. 197.
Hence draw AE bisecting the
 $\angle B A C$.

From P draw PK perp. to $A E$, and produce it to P^{\prime}, making $K P^{\prime}$ equal to $P K$.

Then every circle which has its centre in AE, and passes through P, must also pass through P^{\prime}.

Ex. 1, p. 2:33.
Hence the problem is now reduced to drawing a circle through P and P^{\prime} to touch either $A C$ or $A B$.

Ex. 21, p. 253. Produce $P^{\prime} P$ to meet $A C$ at S.
Describe a square equal to the rect. $\mathrm{SP}, \mathrm{SP}^{\prime} ; \quad$ II. 14. and cut off SR equal to a side of the square. Describe a circle through the points P^{\prime}, P, R.
Then since the rect. $\mathrm{SP}, \mathrm{SP}^{\prime}=$ the sq. on SR, Constr. \therefore this circle touches AC at R;
III. 37, and since its centre is in $A E$, the bisector of the $\angle B A C$, it may be shewn also to touch $A B$.
Q. E.F.

Notes. (i) Since SR may be taken on either side of S, it follows that there will be two solutions of the problem.
(ii) If the given straight lines are parallel, the centre lies on the parallel straight line mid-way between them, and the construction proceeds as before.
24. To describe a circle to touch two given straight lines and a given circle.

Let $A B, A C$ be the two given st. lines, and D the centre of the given circle.
It is required to describe a circle to touch AB, AC and the circle whose centre is D .

Draw EF, GH par ${ }^{1}$ to $A B$ and $A C$ respectively, on the sides remote from D, and at distances from them equal to the radius
 of the given circle.

Describe the \odot MND to touch EF and GH at M and N, and to pass through D. Ex. 23, p. 254.
Let O be the centre of this circle.
Join $O M, O N, O D$ meeting $A B, A C$, and the given circle at P, Q, and R.

Then a circle described with centre O and radius OP will touch $A B, A C$ and the given circle.

For since O is the centre of the \odot MND,

$$
\begin{aligned}
\therefore O M & =O N
\end{aligned}=O D .
$$

\therefore a circle described with centre O , and radius OP , will pass through Q and R.

And since R, the point in which the circles meet, is on the line of centres OD, \therefore the \odot PQR touches the given circle
Q.E.F.

Note. There will be two solutions of this problem, since two circles may be drawn to tcuch EF, GH and to pass through D.
25. To describe a circle to pass through a given point and touch a given straight line and a given circle.

Let P be the given point, $A B$ the given st. line, and DHE the given circle, of which C is the centre.
It is required to describe a circle to pass through P, and to touch $A B$ and tie \odot DHE.

Through C draw DCEF perp. to $A B$, cutting the circle at the points D and E, of which E is between C and $A B$.
Join DP;

and by describing a circle through F, E, and P, find a point K in DP (or DP produced) such that the rect. $D E, D F=$ the rect. $D K, D P$.

Describe a circle to pass through P, K, and touch AB: Ex.21, p. 253. I'his circle shall also touch the given \odot DHE.
For let G be the point at which this circle touches AB.
Join DG, cutting the given circle DHE at H .
Join HE.
Then the \angle DHE is a rt. angle, being in a semicircle,
III. 31.

Constr.
\therefore the points E, F, G, H are concyclic :
\therefore the rect. DE, DF $=$ the rect. DH, DG: iil. 36. but the rect. DE, DF = the rect. DK, DP: Constr.
\therefore the rect. DH, DG $=$ the rect. DK, DP:
\therefore the point H is on the \odot PKG.
Let O be the centre of the \odot PHG. Join OG, OH, CH.
Then OG and DF are par ${ }^{1}$, since they are both perp. to $A B$; and DG meets them.
\therefore the $\angle \mathrm{OGD}=$ the $\angle \mathrm{GDC}$.
I. 29 .

But since $O G=O H$, and $C D=C H$,
\therefore the $\angle O G H=$ the $\angle O H G$; and the $\angle C D H=$ the $\angle C H D$:
\therefore the $\angle \mathrm{OHG}=$ the $\angle \mathrm{CHD}$;
$\therefore \mathrm{OH}$ and CH are in one st. line.
\therefore the \odot PHG touches the given \odot DHE. Q.E.E.

Notes. (i) Since two circles may be drawn to pass through P, K and to touch $A B$, it follows that there will be two solutions of the present problem.
(ii) Two more solutions may be obtained by joining PE, and proceeding as before.

The student should examine the nature of the contact between the circles in each case.
26. Describe a circle to pass through a given point, to touch a given straight line, and to have its centre on another given straight line.
27. Describe a circle to pass through a given point, to touch a given circle, and to have its centre on a given straight line.
28. Describe a circle to pass through two given points, and to intercept an arc of given length on a given circle.
29. Describe a circle to touch a given circle and a given straight line at a given point.
30. Describe a circle to touch two given circles and a given straight line.

v. ON MAXIMA AND MINIMA.

We gather from the Theory of Loci that the position of an angle, line or figure is capable under suitable conditions of gradual change; and it is usually found that change of position involves a corresponding and gradual change of magnitude.

Under these circumstances we may be required to note if any situations exist at which the magnitude in question, after increasing, begins to decrease; or after decreasing, to increase : in such situations the magnitude is said to have reached a Maximum or a Minimum value; for in the former case it is greater, and in the latter case less than in adjacent situations on either side. In the geometry of the circle and straight line we only meet with such cases of continuous change as admit of one transition from an increasing to a decreasing state-or vice versâ-so that in all the problems with which we have to deal (where a single circle is involved) there can be only one Maximum and one Minimum - the Maximum being the greatest, and the Minimum being the least value that the variable magnitude is capable of taking.

Thus a variable geometrical magnitude reaches its maximum or minimum value at a turning point, towards which the magnitude may mount or descend from either side: it is natural therefore to expect a maximum or minimum value to occur when, in the course of its change, the magnitude assumes a symmetrical form or position; and this is usually found to be the case.

This general connection between a symmetrical form or position and a maximum or minimum value is not exact enough to constitute a proof in any particular problem; but by means of it a situation is suggested, which on further examination may be shewn to give the maximum or minimum value sought for.

For example, suppose it is required to determine the greatest straight line that may be drawn perpendicular to the chord of a segment of a circle and intercepted between the chord and the arc:
we immediately anticipate that the greatest perpendicular is that which occupies a symmetrical position in the figure, namely the perpendicular which passes through the middle point of the chord; and on further examination this may be proved to be the case by means of I. 19, and I. 34.

Again we are able to find at what point a geometrical magnitude, varying under certain conditions, assumes its Maximum or Minimum value, if we can discover a construction for drawing the magnitude so that it may have an assigned value: for we may then examine between what limits the assigned value must lie in order that the construction may be possible ; and the higher or lower limit will give the Maximum or Minimum sought for.

It was pointed out in the chapter on the Intersection of Loci, [see page 125] that if under certain conditions existing among the data, two solutions of a problem are possible, and under other conditions, no solution exists, there will always be some intermediate condition under which one and only one distinct solution is possible.

Under these circumstances this single or limiting solution will always be found to correspond to the maximum or minimum value of the magnitude to be constructed.

1. For example, suppose it is required
to divide a given straight line so that the rectangle contained by the two segments may be a maximum.

We may first attempt to divide the given straight line so that the rectangle contained by its segments may have a given area-that is, be equal to the square on a given straight line.

Let $A B$ be the given straight line, and K the side of the given styuare.

It is required to divide the st. line AB at a point M , so that the rect. AM, MB may be equal to the sq. on K .
Adopting a construction suggested by II. 14,
describe a semicircle on $A B$; and at any point X in $A B$, or $A B$ produced, draw $X Y$ perp. to $A B$, and equal to K.

Through Y draw $Y Z$ par ${ }^{1}$ to $A B$, to meet the arc of the semicircle at P.

Then if the perp. $P M$ is drawn to $A B$, it may be shewn after the manner of II. 14, or by III. 35 that

$$
\text { the rect. } \begin{aligned}
\mathrm{AM}, \mathrm{MB} & =\text { the sq. on } \mathrm{PM} \\
& =\text { the sq. on } \mathrm{K} .
\end{aligned}
$$

So that the rectangle AM, MB increases as K increases.
Now if K is less than the radius $C D$, then $Y Z$ will meet the arc of the semicircle in two points P, P^{\prime}; and it follows that $A B$ may be divided at two points, so that the rectangle contained by its segments may be equal to the square on K. If K increases, the st. line $Y Z$ will recede from $A B$, and the points of intersection P, P^{\prime} will continually approach one another ; until, when K is equal to the radius $C D$, the st. line $Y Z$ (now in the position $Y^{\prime} Z^{\prime}$) will meet the arc in two coincident points, that is, will touch the semicircle at D; and there will be only one solution of the problem.

If K is greater than $C D$, the straight line $Y Z$ will not meet the semicircle, and the problem is impossible.

Hence the greatest length that K may have, in order that the construction may be possible, is the radius CD.
\therefore the rect. $A M, M B$ is a maximum, when it is equal to the square on $C D$;
that is, when $P M$ coincides with $C D$, and consequently when M is the middle point of $A B$.

Note. The special feature to be noticed in this problem is that the maximum is found at the transitional point between two solutions and no solution ; that is, when the two solutions coincide and become identical.

The following example illustrates the same point.
2. To find at what point in a given straight line the angle subtended by the line joining two given points, which are on the same side of the given straight line, is a maximum.

Let CD be the given st. line, and A, B the given points on the same side of CD.
It is required to find at what point in CD the angle subtended by the st. line $A B$ is a maximum.
First determine at what point in $C D$, the st. line $A B$ subtends a given angle.

This is done as follows:-
On $A B$ describe a segment of a circle containing an angle equal to the given angle.
III. 33.

If the are of this segment intersects $C D$, two points in $C D$ are found at which $A B$ subtends the given angle : but if the arc does not meet CD, no solution is given.

In accordance with the principles explained above, we expect that a maximum angle is determined at the limiting position; that is, when the arc touches $C D$, or meets it at two coincident points.
[See page 231.]
This we may prove to be the case.
Describe a circle to pass through A and B, and to touch the st. line CD.
[Ex. 21, p. 253.]
Let P be the point of contact.
Then shall the $\angle A P B$ be greater than any other angle subtended by $A B$ at a point in $C D$ on the same side of $A B$ as P.

For take Q, any other point in CD, on the same side of $A B$ as P;

$$
\text { and join } A Q, Q B \text {. }
$$

Since Q is a point in the tangent other
 than the point of contact, it must be without the circle;
\therefore either BQ or AQ must meet the arc of the segment APB. Let $B Q$ meet the are at K : join $A K$.
Then the $\angle A P B=$ the $\angle A K B$, in the same segment: but the ext. $\angle A K B$ is greater than the int. opp. $\angle A Q B$. \therefore the $\angle A P B$ is greater than AQB.
Similarly the $\angle A P B$ may be shewn to be greater than any other angle subtended by $A B$ at a point in $C D$ on the same side of $A B$:
that is, the $\angle A P B$ is the greatest of all such angles. Q.E.D.
Note. Two circles may be described to pass through A and B, and to touch CD, the points of contact being on opposite sides of $A B$;
hence two points in CD may be found such that the angle subtended by $A B$ at each of them is greater than the angle subtended at any other point in $C D$ on the same side of $A B$.

We add two more examples of considerable importance.
3. In a straight line of indefinite length find a point such that the sum of its distances from two given points, on the same side of the given line, shall be a minimum.

Let $C D$ be the given st. line of indefinite length, and A, B the given points on the same side of CD.

It is required to find a point P in CD , such that the sum of AP, PB is a minimum.

Draw AF perp. to CD ; and produce $A F$ to E, making $F E$ equal to $A F$.

Join EB, cutting CD at P.
 Join AP, PB.
Then of all lines draun from A and B to a point in CD , the sum of AP, PB shall be the least. For, let Q be any other point in CD. Join AQ, BQ, EQ.
Now in the $\triangle^{8} A F P, E F P$,
Because $\left\{\begin{array}{l}A F=E F, \\ \text { and } F P \text { is common; } \\ \text { and the } \angle A F P=\text { the } \angle E F P, \quad \text { being rt. angles. }\end{array}\right.$

$$
\therefore A P=E P .
$$

I. 4.

Similarly it may be shewn that
$A Q=E Q$.
Now in the $\triangle E Q B$, the two sides EQ, QB are together greater than EB;
hence, $A Q, Q B$ are together greater than $E B$, that is, greater than AP, PB.
Similarly the sum of the st. lines drawn from A and B to any other point in CD may be shewn to be greater than $A P, P B$.
\therefore the sum of $A P, P B$ is a minimum.
Q.E.D.

Note. It follows from the above proof that

$$
\text { the } \begin{align*}
\angle \mathrm{APF} & =\text { the } \angle \mathrm{EPF} \\
& =\text { the } \angle \mathrm{BPD} .
\end{align*}
$$

Thus the sum of $A P, P B$ is a minimum, when these lines are equally inclined to CD.
4. Given two intersecting straight lines $A B, A C$, and a point P between them; shew that of all straight lines which pass through P and are terminated by AB, AC, that which is bisected at P cuts off the triangle of minimum area.

Let EF be the st. line, terminated by $A B, A C$, which is bisected at P.

Then the $\triangle \mathrm{FAE}$ shall be of minimum area.
For let HK be any other st. line passing through P.

Through E draw EM par to AC.
Then in the \triangle^{8} HPF, MPE,

$$
\text { Because }\left\{\begin{array}{rr}
\text { the } \angle H P F=\text { the } \angle M P E, & \text { I. } 15 . \\
\text { and the } \angle H F P=\text { the } \angle M E P, & \text { I. } 29 . \\
\text { and FP }=E P ; & \text { Hyp. } \\
\therefore \text { the } \triangle H P F=\text { the } \triangle M P E . & \text { I. } 26, \text { Cor. }
\end{array}\right.
$$

But the $\triangle M P E$ is less than the $\triangle K P E$;
\therefore the $\triangle \mathrm{HPF}$ is less than the $\triangle K P E$:
to each add the fig. AHPE; then the $\triangle F A E$ is less than the $\triangle H A K$.

Similarly it may be shewn that the $\triangle F A E$ is less than any other triangle formed by drawing a st. line through P :
that is, the $\triangle F A E$ is a minimum.

Examples.

1. Two sides of a triangle are given in length; how must-they be placed in order that the area of the triangle inay be a maximum?
2. Of all triangles of given base and area, the isosceles is that which has the least perimeter.
3. Given the base and vertical angle of a triangle ; construct it so that its area may be a maximum.
4. Find a point in a given straight line such that the tangents drawn from it to a given circle contain the greatest angle possible.
5. A straight rod slips between two straight rulers placed at right angles to one another ; in what position is the triangle intercepted between the rulers and rod a maximum ?
6. Divide a given straight line into two parts, so that the sum of the squares on the segments
(i) may be equal to a given sçuare ;
(ii) may be a minimum.
7. Through a point of intersection of two circles draw a straight line terminated by the circumferences,
(i) so that it may be of given length ;
(ii) so that it may be a maximum.
8. Two tangents to a circle cut one another at right angles; find the point on the intercepted arc such that the sum of the perpendiculars drawn from it to the tangents may be a minimum.
9. Straight lines are drawn from two given points to meet one another on the convex circumference of a given circle: prove that their sum is a minimum when they make equal angles with the tangent at the point of intersection.
10. Of all triangles of given vertical angle and altitude, that which is isosceles has the least area.
11. Two straight lines $C A, C B$ of indefinite length are drawn from the centre of a circle to meet the circumference at A and B; then of all tangents that may be drawn to the circle at points on the arc $A B$, that whose intercept is bisected at the point of contact cuts off the triangle of minimum area.
12. Given two intersecting tangents to a circle, draw a tangent to the convex arc so that the triangle formed by it and the given tangents may be of maximum area.
13. Of all triangles of given base and area, that which is isosceles has the greatest vertical angle.
14. Find a point on the circumference of a circle at which the straight line joining two given points (of which both are within, or both without the circle) subtends the greatest angle.
15. A bridge consists of three arches, whose spans are 49 ft ., 32 ft . and 49 ft . respectively: shew that the point on either bank of the river at which the middle arch subtends the greatest angle is 63 feet distant from the bridge.
16. From a given point P without a circle whose centre is C, draw a straight line to cut the circumference at A and B, so that the triangle $A C B$ may be of maximum area.
17. Shew that the greatest rectangle which can be inscribed in a circle is a square.
18. A and B are two fixed points without a circle : find a point P on the circumference, such that the sum of the squares on $A P, P B$ may be a minimum. [See p. 161, Ex. 24.]
19. A segment of a circle is described on the chord $A B$: find a point C on its are so that the sum of $A C, B C$ may be a maximum.
20. Of all triangles that can be inscribed in a circle that which has the greatest perimeter is equilateral.
21. Of all triangles that can be inscribed in a given circle that which has the greatest area is equiluteral.
22. Of all triangles that can be inscribed in a given triangle that which has the least perimeter is the triangle formed by joining the feet of the perpendiculars drawn from the vertices on opposite sides.
23. Of all rectangles of given area, the square has the least perimeter.
24. Describe the triangle of maximum area, having its angles equal to those of a given triangle, and its sides passing through three given points.

VI. HARDER MISCELLANEOUS EXAMPLES.

1. $A B$ is a diameter of a given circle ; and $A C, B D$, two chords on the same side of $A B$, intersect at E : shew that the circle which passes through D, E, C cuts the given circle orthogonally.
2. Two circles whose centres are C and D intersect at A and B; and a straight line PAQ is drawn through A and terminated by the circumferences : prove that
(i) the angle $\mathrm{PBQ}=$ the angle CAD
(ii) the angle $\mathrm{BPC}=$ the angle BQD .
3. Two chords $A B, C D$ of a circle whose centre is O intersect at right angles at P : shew that
(i) $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}+\mathrm{PD}^{2}=4$ (radius) ${ }^{2}$.
(ii) $\mathrm{AB}^{2}+\mathrm{CD}^{2}+4 \mathrm{OP}^{2}=8$ (radius) ${ }^{2}$.
4. Two parallel tangents to a circle intercept on any third tangent a portion which is so divided at its point of contact that the rectangle contained by its two parts is equal to the square on the radius.
5. Two equal circles move between two straight lines placed at right angles, so that each straight line is touched by one circle, and the two circles touch one another: find the locus of the point of contact.
6. $A B$ is a given diameter of a circle, and $C D$ is any parallel chord : if any point X in $A B$ is joined to the extremities of $C D$, shew that

$$
X C^{2}+X D^{2}=X A^{2}+X B^{2}
$$

7. $P Q$ is a fixed chord in a circle, and $P X$. $Q Y$ any two parallel chords through P and Q : shew that $X Y$ tonches a fixed eoncentric circle.
S. Two equal circles intersect at A and B : and from C, any point on the eircumference of one of them, a perpendicular is irawn to $A B$, meeting the other circle at O and O^{\prime}; shew that either O or O is the orthocentre of the triangle $A B C$. Distinguish between the two cases.
8. Three equal circles pass through the same point A, and their other points of intersection are B, C, D : shew that of the four points A, B, C, D, each is the orthocentre of the triangle formed by joining the other three.
9. From a given point without a circle draw a straight line to the concare circumference so as to be bisected by the convex circumference. When is this problem impossible ?
10. Draw a straight line cutting two concentric circles so that the chord intercepted by the circumference of the greater circle may be double of the chord intercepted by the less.
11. $A B C$ is a triangle inscribed in a circle, and $A^{\prime}, B^{\prime}, C^{\prime}$ are the midale points of the ares subtended by the sides (remote from the opposite rertices): find the relation between the angles of the two triangles $A B C, A^{\prime} B^{\prime} C$: and prove that the pedal triangle of $A^{\prime} B^{\prime} C^{\prime}$ is equiangular to the triangle $A B C$.
12. The opposite sides of a quadrilateral inscribed in a circle are produced to meet : shew that the bisectors of the two angles so formed are perpendicular to one another.
13. If a quadrilateral can have one circle inscribed in it, and another circumseribed about it : shew that the straight lines joining the opposite points of contact of the inscribed circle are perpendicular to one another.
14. Given the base of a triangle and the sum of the remaining sides: find the locus of the foot of the perpendicular from one extremity of the base on the bisector of the exterior vertical angle.
15. Two circles touch each other at C. and straight lines are drawn through C at right angles to one another, meeting the circles at P, P^{\prime} and Q. Q^{\prime} respectively: if the straight line which joins the centres is terminated by the circumferences at A and A^{\prime}, shew that

$$
P^{\prime} P^{2}+Q^{\prime} Q^{2}=A^{\prime} A^{2}
$$

17. Two circles cut one another orthogonally at A and $B: P$ is any point on the are of one circle intercepted by the other, and $P A, P B$ are produced to meet the circumference of the second circle at C and D : shew that $C D$ is a diameter.
18. $A B C$ is a triangle, and from any point P perpendiculars $P D, P E, P F$ are drawn to the sides: if $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are the centres of the circles circumscribed about the triangles EPF, FPD, DPE, shew that the triangle $S_{1} \mathrm{~S}_{2} \mathrm{~S}_{3}$ is equiangular to the triangle $A B C$, and that the sides of the one are respectively half of the sides of the other.
19. Two tangents $P A, P B$ are drawn from an external point P to a given circle, and C is the middle point of the chord of contact $A B$; if $X Y$ is any chord through P, shew that $A B$ bisects the angle XCY.
20. Given the sum of two straight lines and the rectangle contained by them (equal to a given square) : find the lines.
21. Given the sum of the squares on two straight lines and the rectangle contained by them: find the lines.
22. Given the sum of two straight lines and the sum of the squares on them : find the lines.
23. Given the difference between two straight lines, and the rectangle contained by them: find the lines.
24. Given the sum or difference of two straight lines and the difference of their squares: find the lines.
25. ABC is a triangle, and the internal and external hisectors of the angle A meet $B C$, and $B C$ produced, at P and P^{\prime} : if O is the middle point of $P P^{\prime}$, shew that $O A$ is a tangent to the circle circumscribed about the triangle $A B C$.
26. $A B C$ is a triangle, and from P, any point on the circumference of the circle circumscribed about it, perpendiculars are drawn to the sides $B C, C A, A B$ meeting the circle again in $A^{\prime}, B^{\prime}, C^{\prime}$; prove that
(i) the triangle $A^{\prime} B^{\prime} C^{\prime}$ is identically equal to the triangle $A B C$.
(ii) $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ are parallel.
27. Two equal circles intersect at fixed points A and B, and from any point in $A B$ a perpendicular is drawn to meet the circumferences on the same side of $A B$ at P and Q : shew that $P Q$ is of constant length.
28. The straight lines which join the vertices of a triangle to the centre of its circumscribed circle, are perpendicular respectively to the sides of the pedal triangle.
29. P is any point on the circumference of a circle circumscribed about a triangle $A B C$; and perpendiculars PD, PE are drawn from P to the sides BC, CA. Find the locus of the centre of the circle eircumscribed about the triangle PDE.
30. P is any point on the circumference of a circle circumscribed about a triangle ABC : shew that the angle between Simson's Line for the point P and the side $B C$ is equal to the angle between $A P$ and the diameter of the circumscribed circle through A.
31. Shew that the circles circumscribed about the four triangles formed by two pairs of intersecting straight lines meet in a point.
32. Shew that the orthocentres of the four triangles formed by two pairs of intersecting straight lines are collinear.

On the Construction of Triangles.

33. Given the vertical angle, one of the sides containing it, and the length of the perpendicular from the vertex on the base: construct the triangle.
34. Given the feet of the perpendiculars drawn from the vertices on the opposite sides : construct the triangle.
35. Given the base, the altitude, and the radius of the circumscribed circle: construct the triangle.
36. Given the base, the vertical angle, and the sum of the squares on the sides containing the vertical angle: construct the triangle.
37. Given the base, the altitude and the sum of the squares on the sides containing the vertical angle: construct the triangle.
38. Given the base, the vertical angle, and the difference of the squares on the sides containing the vertical angle: construct the triangle.
39. Given the vertical angle, and the lengths of the two medians drawn from the extremities of the base : construct the triangle.
40. Given the base, the vertical angle, and the difference of the angles at the base : construct the triangle.
41. Given the base, and the position of the bisector of the vertical angle: construct the triangle.
42. Given the base, the vertical angle, and the length of the bisector of the vertical angle : constrict the triangle.
43. Given the perpendicular from the vertex on the base, the bisector of the vertical angle, and the median which bisects the base : construct the triangle.
44. Given the bisector of the vertical angle, the median bisecting the base, and the difference of the angles at the base : construct the triangle.

BOOK IV.

Book IV. consists entirely of problems, dealing with various rectilineal figures in relation to the circles which pass through their angular points, or are touched by their sides.

Definitions.

1. A Polygon is a rectilineal figure bounded by more than four sides.

A Polygon of five sides is called a Pentagon,

"	six sides	"	Hexagon,
"	seven sides		Heptagon,
"	eight sides	"	Octagon,
"	ten sides	"	Decagon,
,	twelve sides		Dodecagon,
"	fifteen sides		Quindecago

2. A Polygon is Regular when all its sides are equal, and all its angles are equal.
3. A rectilineal figure is said to be inscribed in a circle, when all its angular points are on the circumference of the circle; and a circle is said to be circumscribed about a rectilineal figure, when the circumference of the circle passes through all the angular points of the figure.

4. A circle is said to be inscribed in a rectilineal figure, when the circumference of thecircle is touched by each side of the figure; and a rectilineal figure is said to be circumscribed about a circle, when each side of the figure is a tangent to the circle.

5. A straight line is said to be placed in a circle, when its extremities are on the circumference of the circle.

Proposition 1. Problem.

In a diven circle to place a chord equal to a given straight line, which is not greater ihan the diameter of the circle.

Let $A B C$ be the given circle, and D the given straight line not greater than the diameter of the circle.

It is required to place in the $\odot \mathrm{ABC}$ a chord equal to D .
Construction. Draw CB, a diameter of the \odot ABC.
Then if $C B=D$, the thing required is done.
But if not, CB must be greater than D. Hyp.
From CB cut off CE equal to D: I. 3 . and with centre C, and radius $C E$, describe the $\odot A E F$, cutting the given circle at A . Join CA.
Then CA shall be the chord required.
Proof. For $C A=C E$, being radii of the $\odot A E F$;
and $C E=D$:
Constr.
$\therefore C A=D$.
Q.E.F.

EXERCISES.

1. In a given circle place a chord of given length so as to pass through a given point (i) without, (ii) within the circle.

When is this problem impossible?
2. In a given circle place a chord of given length so that it may be parallel to a given straight line.

Proposition 2. Problem.

In a given circle to inscribe a triangle equiangular to a given triangle.

Let $A B C$ be the given circle, and $D E F$ the given triangle. It is required to inscribe in the $\odot \mathrm{ABC}$ a triangle equiangular to the $\triangle \mathrm{DEF}$.

Construction. At any point A, on the $O^{\text {ce }}$ of the $\odot A B C$, draw the tangent GAH. III. 17.

At A make the $\angle \mathrm{GAB}$ equal to the $\angle \mathrm{DFE} ; \quad$ I. 23.
and make the $\angle H A C$ equal to the $\angle D E F$.
I. 23. Join BC.
Then ABC shall be the triangle required.
Proof. Because GH is a tangent to the $\odot A B C$, and from A its point of contact the chord $A B$ is drawn,
\therefore the $\angle \mathrm{GAB}=$ the $\angle \mathrm{ACB}$ in the alt. segment: III. 32 . but the $\angle \mathrm{GAB}=$ the $\angle \mathrm{DFE}$;

Constr. \therefore the $\angle A C B=$ the $\angle D F E$.
Similarly the $\angle H A C=$ the $\angle A B C$, in the alt. segment :
\therefore the $\angle A B C=$ the $\angle D E F$.
Constr.
Hence the third $\angle B A C=$ the third $\angle E D F$, for the three angles in each triangle are together equal to two rt. angles.
I. 32 .
\therefore the $\triangle A B C$ is equiangular to the $\triangle D E F$, and it is inscribed in the $\odot A B C$.

Q.E.F.

Proposition 3. Problem.

About a given circle to circumscrale a triangle equiangular to a given triangle.

Let $A B C$ be the given circle, and DEF the given triangle. It is required to circumscribe about the $\odot \mathrm{ABC} a$ triangle equiungular to the $\triangle D E F$.
Construction. Produce EF both ways to G and H.
Find K the centre of the $\odot \mathrm{ABC}$,
III. 1. and draw any radius KB.
At K make the $\angle B K A$ equal to the $\angle D E G$;
I. 23. and make the $\angle B K C$ equal to the $\angle D F H$.
Through A, B, C draw LM, MN, NL perp. to KA, KB, KC. Then LMN shall be the triangle required.
Proof. Because LM, MN, NL are drawn perp. to radii at their extremities.
\therefore LM, MN, NL are tangents to the circle. III. 16 .
And because the four angles of the quadrilateral AKBM together $=$ four rt. angles ;
I. 32. Cor.
and of these, the $\angle^{3} \mathrm{KAM}, \mathrm{KBM}$ are rt. angles ; Constr.
\therefore the \angle^{8} AKB, AMB together $=$ two rt. angles.
But the \angle^{8} DEG, DEF together = two rt. angles ;
I. 13.
\therefore the $\angle^{3} \mathrm{AKB}, \mathrm{AMB}=$ the $\angle^{8} \mathrm{DEG}, \mathrm{DEF}$;
and of these, the $\angle A K B=$ the $\angle D E G$;
Constr.
\therefore the $\angle A M B=$ the $\angle D E F$.
Similarly it may be shewn that the $\angle L N M=$ the $\angle D F E$. \therefore the third $\angle M L N=$ the third $\angle E D F$.
I. 32 .
\therefore the $\triangle L M N$ is equiangular to the $\triangle D E F$, and it is circumscribed about the $\odot A B C$.

Proposition 4. Problem.
To inscribe a circle in a given triungle

Let $A B C$ be the given triangle. It is required to inscribe a circle in the $\triangle \mathrm{ABC}$.

Construction. Bisect the $\angle^{3} A B C, A C B$ by the st. lines BI, CI, which intersect at I .

From I draw IE, IF, IG perp. to AB, BC, CA.
I. 12.

Proof. Then in the \triangle^{8} EIB, FIB,
Because $\left\{\begin{array}{c}\text { the } \angle \mathrm{EBI}=\text { the } \angle \mathrm{FBI} ; \\ \text { and the } \angle \mathrm{BEI}=\text { the } \angle \mathrm{BFI}, \text { being rt. angles ; } \\ \text { and } \mathrm{BI} \text { is common } ;\end{array}\right.$

$$
\therefore \quad \mathrm{IE}=\mathrm{IF} .
$$

I. 26 .

Similarly it may be shewn that $\mathrm{IF}=\mathrm{IG}$.
\therefore IE, IF, IG are all equal.
With centre I , and radius IE , describe a circle.
This circle must pass through the points E, F, G; and it will be inscribed in the $\triangle \mathrm{ABC}$.
For since $I E, I F, I G$, being equal, are radii of the $\odot E F G$; and since the \angle^{s} at E, F, G are rt. angles ; Constr.
\therefore the $\odot E F G$ is touched at these points by $A B, B C, C A$:
III. 16.
\therefore the $\odot E F G$ is inscribed in the $\triangle A B C$.
Q.E.F.

Note. From page 111 it is seen that if Al is joined, then Al bisects the angle BAC : hence it follows that

The bisectors of the angles of a triangle are concurrent, the point of intersection being the centre of the inscribed circle.

The centre of the circle inscribed in a triangle is usually called its in-centre.

Definition.

A circle which touches one side of a triangle and the other two sides produced is said to be an escribed circle of the triangle.

T'o draw an escribed circle of a given triangle.
Let $A B C$ be the given triangle, of which the two sides $A B, A C$ are produced to E and F.
It is required to describe a circle touching BC , and AB, AC produced.
Bisect the L^{8} CBE, BCF by the st. lines $B I_{1}, C I_{1}$, which intersect at I_{1}. I. 9 . From I_{1} draw $I_{1} G, I_{1} H, I_{1} K$ perp. to $A E, B C, A F$.
I. 12.

Then in the $\triangle^{s} I_{1} B G, I_{1} B H$, the $\angle I_{1} B G=$ the $\angle I_{1} B H$, Constr.
Because $\left\{\right.$ and the $\angle I_{1} G B=$ the $\angle I_{1} H B$, being rt. angles ;

$$
\text { also } I_{1} B \text { is common ; }
$$

Similarly it may be shewn that $I_{1} H=I_{1} K$;

$$
\therefore I_{1} G, I_{1} H, I_{1} K \text { are all equal. }
$$

With centre I_{1} and radius $I_{1} G$, describe a circle.
This circle must pass through the points $\mathrm{G}, \mathrm{H}, \mathrm{K}$; and it will be an escribed circle of the $\triangle A B C$.
For since $I_{1} H, I_{1} G, I_{1} K$, being equal, are radii of the \odot HGK, and since the angles at $\mathrm{H}, \mathrm{G}, \mathrm{K}$ are rt. angles,
\therefore the \odot GHK is touched at these points by BC, and by $A B, A C$ produced:
\therefore the \odot GHK is an escribed circle of the $\triangle A B C$. Q.E.F.
It is clear that every triangle has three escribed circles.
Note. From page 112 it is seen that if Al_{1} is joined, then Al_{1} bisects the angle BAC : hence it follows that

The bisectors of two exterior angles of a triangle and the bisector of the third angle are concurrent, the point of intersection being the centre of an escribed circle.

Proposition 5. Problem.

To circumscribe a circle about a given triangle.

Let $A B C$ be the given triangle.
It is required to circumscribe a circle about the $\triangle \mathrm{ABC}$.
Construction. Draw DS bisecting AB at rt. angles; I. 11. and draw ES bisecting $A C$ at rt. angles.
Then since $A B, A C$ are neither par ${ }^{1}$, nor in the same st. line,
\therefore DS and ES must meet at some point S.
Join SA ;
and if S be not in $B C$, join $S B, S C$.
Proof. Then in the $\triangle^{8} A D S, B D S$,
Because $\left\{\begin{array}{l}A D=B D \\ \text { and } D S \text { is common to both; } \\ \text { and the } \angle A D S=\text { the } \angle B D S, \text { being rt. angles ; }\end{array}\right.$

$$
\therefore \mathrm{SA}=\mathrm{SB} .
$$

I. 4.

Similarly it may be shewn that $S C=S A$.
$\therefore \mathrm{SA}, \mathrm{SB}, \mathrm{SC}$ are all equal.
With centre S, and radius SA, describe a circle : this circle must pass through the points A, B, C, and is therefore circumscribed about the $\triangle A B C$. Q.E.F.

It follows that
(i) when the centre of the circumscribed circle falls within the triangle, each of its angles must be acute, for each angle is then in a segment greater than a semicircle :
(ii) when the centre falls on one of the sides of the triangle, the angle opposite to this side must be a right angle, for it is the angle in a semicircle :
(iii) when the centre falls without the triangle, the angle opposite to the side beyond which the centre falls, must be obtuse, for it is the angle in a segment less than a semicircle.

Therefore, conversely, if the given triangle be acute-angled, the centre of the circumscribed circle falls within it : if it be a rightangled triungle, the centre falls on the hypotenuse: if it be an obtuse-angled triangle, the centre falls without the triangle.

Note. From page 111 it is seen that if S is joined to the middle point of $B C$, then the joining line is perpendicular to $B C$.

Hence the perpendiculars drawn to the sides of a triangle from their middle points are concurrent, the point of intersection being the centre of the circle circumscribed about the triangle.

The centre of the circle circumscribed about a triangle is usually called its circum-centre.

EXERCISES.

On the Inscribed, Circumscribed, and Escribed Circles of a Triangle.

1. An equilateral triangle is inscribed in a circle, and tangents are drawn at its vertices, prove that
(i) the resulting figure is an equilateral triangle:
(ii) its area is four times that of the given triangle.
2. Describe a circle to touch two parallel straight lines and a third straight line which meets them. Shew that two such circles can be drawn, and that they are equal.
3. Triangles which have equal bases and equal vertical angles have equal circumscribed circles.
4. I is the centre of the circle inscribed in the triangle $A B C$, and I_{1} is the centre of the circle which touches BC and AB, AC produced: shew that $\mathrm{A}, \mathrm{I}, \mathrm{I}_{1}$ are collinear.
5. If the inscribed and circumscribed circles of a triangle are concentric, shew that the triangle is equilateral; and that the diameter of the circumscribed circle is double that of the inscribed circle.
6. $A B C$ is a triangle, and I, S are the centres of the inscribed and circumscribed circles; if A, I, S are collinear, shew that $A B=A C$
7. The sum of the diameters of the inscribed and circumscribed circles of a right-angled triangle is equal to the sum of the sides containing the right angle.
8. If the circle inscribed in a triangle $A B C$ touches the sides at D, E, F, shew that the triangle DEF is acute-angled; and express its angles in terms of the angles at A, B, C.
9. If I is the centre of the circle inscribed in the triangle $A B C$, and I_{1} the centre of the escribed circle which touches $B C$; shew that $\mathrm{I}, \mathrm{B}, \mathrm{I}_{1}, \mathrm{C}$ are concyclic.
10. In any triangle the difference of two sides is equal to the difference of the segments into which the third side is divided at the point of contact of the inscribed circle.
11. In the triangle $A B C$ the bisector of the angle BAC meets the base at D, and from I the centre of the inscribed circle a perpendicular $I E$ is drawn to $B C$: shew that the angle BID is equal to the angle CIE.
12. In the triangle $A B C, I$ and S are the centres of the inscribed and circumscribed circles: shew that IS subtends at A an angle equal to half the difference of the angles at the base of the triangle.
13. In a triangle $A B C, I$ and S are the centres of the inscribed and circumscribed circles, and AD is drawn perpendicular to $B C$: shew that Al is the bisector of the angle DAS.
14. Shew that the area of a triangle is equal to the rectangle contained by its semi-perimeter and the radius of the inscribed circle.
15. The diagonals of a quadrilateral $A B C D$ intersect at O : shew that the centres of the circles circumscribed about the four triangles $A O B, B O C, C O D, D O A$ are at the angular points of a parallelogram.
16. In any triangle $A B C$, if I is the centre of the inscribed circle, and if $A 1$ is produced to meet the circumscribed circle at O; shew that O is the centre of the circle circumscribed about the triangle BIC.
17. Given the base, altitude, and the radius of the circumscribed circle ; construct the triangle.
18. Describe a circle to intercept equal chords of given length on three given straight lines.
19. In an equilateral triangle the radii of the circumscribed and escribed circles are respectively double and treble of the radius of the inscribed circle.
20. Three circles whose centres are A, B, C touch one another externally two by two at D, E, F : shew that the inscribed circle of the triangle $A B C$ is the circumscribed circle of the triangle $D E F$.

Proposition 6. Problem.

To inscribe a square in a given circle.

Let $A B C D$ be the given circle.
It is required to inscribe a square in the $\odot \operatorname{ABCD}$.
Construction. Find E the centre of the circle: III. 1. and draw two diameters AC, BD perp. to one another. I. 11 . Join AB, BC, CD, DA.
Then the fig. ABCD shall be the square required.
Proof. For in the $\triangle^{s} B E A, D E A$,
Because $\left\{\begin{array}{c}B E=D E, \\ \text { and } E A \text { is common; } \quad \text { I. Def. } 15 . \\ \text { and the } \angle B E A=\text { the } \angle D E A, \text { being rt. angles ; } \\ \therefore B A=D A .\end{array}\right.$
Similarly it may be shewn that $C D=D A$, and that $B C=C D$.
\therefore the fig. ABCD is equilateral.
And since $B D$ is a diameter of the $\odot A B C D$,
\therefore BAD is a semicircle;
\therefore the $\angle B A D$ is a rt. angle.
III. 31.

Similarly the other angles of the fig. $A B C D$ are rt. angles.
\therefore the fig. ABCD is a square; and it is inscribed in the given circle.
Q.E.F.
[For Exercises see page 281.]

Proposition 7. Problem.

To circumscribe a square about a given circle.

Let $A B C D$ be the given circle.
It is required to circumscribe a square about the $\odot \mathrm{ABCD}$.
Construction. Find E the centre of the $\odot A B C D$: III. 1. and draw two diameters AC, BD perp. to one another. I. 11. Through A, B, C, D draw FG, GH, HK, KF perp. to EA, EB, EC, ED.

Then the fig. GK shall be the square required.
Proof. Because FG, GH, HK, KF are drawn perp. to radii at their extremities,
\therefore FG, GH, HK, KF are tangents to the circle. III. 16. And because the $\angle^{8} \mathrm{AEB}, \mathrm{EBG}$ are both rt. angles, Constr. \therefore GH is parl to AC. \quad I. 28. Similarly FK is par to AC : and in like manner GF, BD, HK are par ${ }^{1}$. Hence the figs. GK, GC, AK, GD, BK, GE are par ${ }^{\text {ms }}$. \therefore GF and HK each $=B D$; also GH and FK each = AC : but $A C=B D$;
$\therefore \mathrm{GF}, \mathrm{FK}, \mathrm{KH}, \mathrm{HG}$ are all equal :
that is, the fig. GK is equilateral.
And since the fig. GE is a par ${ }^{\mathrm{m}}$,

$$
\begin{array}{ll}
\therefore \text { the } \angle B G A=\text { the } \angle B E A ; & \text { I. } 34 . \\
\text { but the } \angle B E A \text { is a rt. angle; } & \text { Constr. }
\end{array}
$$

\therefore the \angle at G is a rt. angle.
Similarly the \angle^{3} at $\mathrm{F}, \mathrm{K}, \mathrm{H}$ are rt. angles.
\therefore the fig. GK is a square, and it has been circumscribed about the $\odot A B C D$.

Proposition 8. Problem.

To inscribe a circle in a given square.

Let $A B C D$ be the given square.
It is required to inscribe a circle in the square ABCD .
Construction. Bisect the sides $A B, A D$ at F and E. I. 10.
Through E draw EH par to $A B$ or DC :
I. 31 . and through F draw $F K$ par ${ }^{1}$ to $A D$ or $B C$, meeting $E H$ at G.

Proof. Now $A B=A D$, being the sides of a square; and their halves are equal
$A x .7$.

$$
\therefore A F=A E .
$$

But the fig. $A G$ is a p^{m};
Constr.
$\therefore \mathrm{AF}=\mathrm{GE}$, and $A E=\mathrm{GF}$; $\therefore \mathrm{GE}=\mathrm{GF}$.

Similarly it may be shewn that GE $=\mathrm{GK}$, and $\mathrm{GK}=\mathrm{GH}$:
\therefore GF, GE, GK, GH are all equal.
With centre G, and radius GE, describe a circle.
This circle must pass through the points $\mathrm{F}, \mathrm{E}, \mathrm{K}, \mathrm{H}$; and it will be touched by $\mathrm{BA}, \mathrm{AD}, \mathrm{DC}, \mathrm{CB}$; III. 16. for GF, GE, GK, GH, being equal, are radii ; and the angles at F, E, K, H are rt. angles. I. 29. Hence the \odot FEKH is inscribed in the sq. ABCD. Q.E.F.
[For Exercises see p. 281.]

Proposition 9. Problem

To circumscribe a circle about a given square.

Let $A B C D$ be the given square.
It is required to circumscribe a circle about the square $A B C D$
Construction. Join AC, BD, intersecting at E.
Proof.
Then in the $\triangle^{8} B A C, D A C$,
Because $\begin{cases}B A=D A, & \text { I. Def. } 30 . \\ \text { and } A C \text { is common; } \\ \text { and } B C=D C ; & \text { I. Def. } 30 .\end{cases}$
\therefore the $\angle \mathrm{BAC}=$ the $\angle \mathrm{DAC}$;
I. 8.
that is, the diagonal $A C$ bisects the $\angle B A D$.
Similarly the remaining angles of the square are bisected by the diagonals $A C$ or $B D$.

Hence each of the $\angle^{8} E A D$, EDA is half a rt. angle ;
\therefore the $\angle E A D=$ the $\angle E D A$:

$$
\therefore E A=E D .
$$

I. 6.

Similarly it may be shewn that $E D=E C$, and $E C=E B$.
$\therefore E A, E B, E C, E D$ are all equal.
With centre E, and radius EA, describe a circle : this circle must pass through the points A, B, C, D, and is therefore circumscribed about the sq. ABCD.
Q.E.F.

Definition. A rectilineal figure about which a circle may be described is said to be Cyclic.

EXERCISES ON PROPOSITIONS 6-9.

1. If a circle can be inscribed in a quadrilateral, shew that the sum of one pair of opposite sides is equal to the sum of the other pair.
2. If the sum of one pair of opposite sides of a quadrilateral is equal to the sum of the other pair, shew that a circle may be inscribed in the figure.
[Bisect two adjacent angles of the figure, and so describe a circle to touch three of its sides. Then prove indirectly by means of the last exercise that this circle must also touch the fourth side.]
3. Prove that a rhombus and a square are the only parallelograms in which a circle can be inscribed.
4. All cyclic parallelograms are rectangular.
5. The greatest rectangle which can be inscribed in a given circle is a square.
6. Circumscribe a rhombus about a given circle.
7. All squares circumscribed about a given circle are equal.
8. The area of a square circumscribed about a circle is double of the area of the inscribed square.
9. $A B C D$ is a square inscribed in a circle, and P is any point on the arc $A D$: shew that the side $A D$ subtends at P an angle three times as great as that subtended at P by any one of the other sides.
10. Inscribe a square in a given square $A B C D$, so that one of its angular points shall be at a given point X in $A B$.
11. In a given square inscribe the square of minimum area.
12. Describe (i) a circle, (ii) a square about a given rectangle.
13. Inscribe (i) a circle, (ii) a square in a given quadrant.
14. $A B C D$ is a square inscribod in a circle, and P is any point on the circumference; shew that the sum of the squares on PA, PB, PC, PD is double the square on the diameter. [See Ex. 24, p. 161.]

Proposition 10. Problem.

To describe an isosceles triangle having each of the angles at the base double of the third angle.

Construction. Take any straight line AB. Divide $A B$ at C, so that the rect. $B A, B C=$ the sq. on $A C$.

With centre A, and radius $A B$, describe the $\odot B D E$; and in it place the chord $B D$ equal to $A C$. Iv. 1. Join DA.
Then ABD shall be the triangle required. Join CD;
and about the $\triangle A C D$ circumscribe a circle. Iv. 5.
Proof. Now the rect. $\mathrm{BA}, \mathrm{BC}=$ the sq. on AC Constr. $=$ the sq. on BD. Constr.
Hence BD is a tangent to the \odot ACD: III. 37. and from the point of contact D a chord $D C$ is drawn ;
\therefore the $\angle B D C=$ the $\angle C A D$ in the alt. segment. III. 32 ,
To each of these equals add the $\angle C D A$:
then the whole $\angle B D A=$ the sum of the $\angle^{\circ} \mathrm{CAD}, \mathrm{CDA}$.
But the ext. $\angle D C B=$ the sum of the $\angle^{8} C A D, C D A ; ~ I .32$.
\therefore the $\angle D C B=$ the $\angle B D A$.
And since $A B=A D$, being radii of the $\odot B D E$,
\therefore the $\angle D B A=$ the $\angle B D A$;
I. 5.
\therefore the $\angle D B C=$ the $\angle D C B$;

$$
\begin{aligned}
\therefore D C & =D B ; & \text { I. } 6 . \\
\text { that is, } 6 C & =C A: & \text { Constr. } \\
\therefore \text { the } \angle C A D & =\text { the } \angle C D A ; & \text { I. } 5 .
\end{aligned}
$$

\therefore the sum of the $\angle C A D, C D A=$ twice the angle at A. But the $\angle \mathrm{ADB}=$ the sum of the $\angle^{B} \mathrm{CAD}, \mathrm{CDA} ; \quad$ Proved. \therefore each of the $\angle A B D, A D B=$ twice the angle at A.
Q.E.F.

EXERCISES ON PROPOSITION 10.

1. In an isosceles triangle in which each of the angles at the base is double of the vertical angle, shew that the vertical angle is one-fifth of two right angles.
2. Divide a right angle into five equal parts.
3. Describe an isosceles triangle whose vertical angle shall be three times either angle at the base. Point out a triangle of this kind in the figure of Proposition 10.
4. In the figure of Proposition 10, if the two circles intersect at F , shew that $\mathrm{BD}=\mathrm{DF}$.
5. In the figure of Proposition 10, shew that the circle ACD is equal to the circle circumscribed about the triangle ABD.
6. In the figure of Proposition 10, if the two circles intersect at F, shew that
(i) $B D, D F$ are sides of a regular decagon inscribed in the circle EBD.
(ii) $A C, C D, D F$ are sides of a regular pentagon inscribed in the circle $A C D$.
7. In the figure of Proposition 10, shew that the centre of the circle circumscribed about the triangle DBC is the middle point of the arc CD.
8. In the figure of Proposition 10, if I is the centre of the circle inscribed in the triangle $A B D$, and I^{\prime}, S^{\prime} the centres of the inscribed and circumscribed circles of the triangle $D B C$, shew that $S^{\prime} 1=S^{\prime} I^{\prime}$.

Proposition 11. Problem.

To inscribe a regular pentagos in a given circie.

Let $A B C$ be a given circle.
It is requirat to inseribe a regular pentagon in the © $A B C$.
Construction Describe an isosceles \triangle FGH. having each of the angles at G and H double of the angle at F . IN. 10 .

In the $\because A B C$ insoribe the $\triangle A C D$ equiangular to the $\angle F G H$,
Iv. 2
so that earh of the - $A C D, A D C$ is rlouble of the - CAD.
Bisect the $L^{*} A C D, A D C$ by $C E$ and $D B$, which meet the $D^{3 x}$ at E and B.

L 9 .

$$
\text { Join } A B, B C, A E, E D \text {. }
$$

Twen $A B C D E$ shall bee the repuirsd rogular pentagon.
Proof. Since each of the $\angle^{\prime} A C D, A D C=$ twice the - CAD ; and since the $-A C D, A D C$ are bisected by $C E, D B$,
\therefore the five $-A D B, B D C, C A D, D C E, E C A$ are all equal.
\therefore the five ancs $A B, B C, C D, D E$. EA are all equal. III. 26.
\therefore the five chords $A B, B C, C D, D E, E A$ are all equal III. 29.
\therefore the pentagon $A B C D E$ is equilateral.
Again the arc $A B=$ the arc $D E$;
Pracod.
to each of these equals andd the arc BCD ;
\therefore the arc $A B C D=$ the are $B C D E:$
hence the angles at the c^{m} which stand upon these equal ares are equal ;
III. 27.

$$
\text { that is, the }-A E D=\text { the }-B A E \text {. }
$$

In like manner the remaining angles of the pentagon may be shewn to be equal ;
\therefore the pentagon $A B C D E$ is equiangular.
Hence the pentagon being borth equilateral and equiangular, is regular ; and it is inscribed in the 3 ABC. Q.E.E.

Proposition 12. Problam.
To circumscribe a regular pentagon about a given circle.

Let $A B C D$ be the given circle.
It is required to circumscribe a regular pentagon about the \odot ABCD.

Construction.

Inscribe a regular pentagon in the $\odot A B C D$, IV. 11 and let A, B, C, D, E be its angular points.
At the points A, B, C, D, E draw $G H, H K, K L, L M, M G$, tangents to the circle.
III. 17.

Then shall GHKLM be the required regular pentagon.
Find F the centre of the $\odot A B C D$;
III. 1.
and join FB, FK, FC, FL, FD.
Proof.
In the $\triangle^{8} B F K, C F K$,
$B F=C F$, being radii of the circle,
Because and FK is common ;
and $K B=K C$, being tangents to the circle from the same point K;

Hence the $\angle B F C=$ twice the $\angle C F K$, and the $\angle \mathrm{BKC}=$ twice the $\angle \mathrm{CKF}$.
Similarly it may be shewn that the $\angle \mathrm{CFD}=$ twice the $\angle \mathrm{CFL}$,
and that the $\angle C L D=$ twice the $\angle C L F$.
But since the are $B C=$ the are $C D$,
Iv. 11.
\therefore the $\angle \mathrm{BFC}=$ the $\angle \mathrm{CFD}$;
III. 27.
and the halves of these angles are equal,
that is, the $\angle \mathrm{CFK}=$ the $\angle \mathrm{CFL}$.

Then in the $\triangle^{\circ} \mathrm{CFK}, \mathrm{CFL}$,
Because $\begin{cases}\text { the } \angle C F K=\text { the } \angle C F L, \\ \text { and the } \angle F C K=\text { the } \angle F C L, & \text { peing rt. angles, } \\ \text { and } F C \text { is comed. } 18 .\end{cases}$

$$
\therefore C K=C L \text {, }
$$

I. 26.
and the $\angle F K C=$ the $\angle F L C$.
Hence KL is double of KC; similarly HK is double of KB.

$$
\text { And since } K C=K B \text {, III. } 17 \text {, Cor. }
$$

$\therefore \mathrm{KL}=\mathrm{HK}$.
In the same way it may be shewn that every two consecutive sides are equal ;
\therefore the pentagon GHKLM is equilateral.
Again, it has been proved that the $\angle F K C=$ the $\angle F L C$, and that the $\angle^{8} \mathrm{HKL}$, KLM are respectively double of these angles :
\therefore the $\angle H K L=$ the $\angle K L M$.
In the same way it may be shewn that every two consecutive angles of the figure are equal ;
\therefore the pentagon GHKLM is equiangular.
\therefore the pentagon is regular, and it is circumscribed about the $\odot A B C D$.
Q.E.F.

Corollary. Similarly it may be proved that if tangents are drawn at the vertices of any regular polygon inscribed in a circle, they will form another regular polygon of the same species circumscribed about the circle.

Proposition 13. Problem.

To inscribe a circle in a given regular pentagon.

Let $A B C D E$ be the given regular pentagon.
It is required to inscribe a circle within the figure ABCDE.
Construction. Bisect two consecutive $\angle^{8} B C D, C D E$ by $C F$ and DF which intersect at F.

Join FB;
and draw FH , FK perp. to BC, CD. I. 12.
Proof. In the $\triangle^{s} B C F, D C F$,

$$
\text { Because }\left\{\begin{array}{rr}
\mathrm{BC}=\mathrm{DC}, & \text { Hyp. } \\
\text { and } C F \text { is common to both; } & \\
\text { and the } \angle \mathrm{BCF}=\text { the } \angle \mathrm{DCF} ; & \text { Constr. } \\
\therefore \text { the } \angle \mathrm{CBF}=\text { the } \angle \mathrm{CDF} . & \text { I. } 4 .
\end{array}\right.
$$

But the $\angle C D F$ is half an angle of the regular pentagon: also the $\angle C B F$ is half an angle of the regular pentagon : that is, $F B$ bisects the $\angle A B C$.
So it may be shewn that if FA, FE were joined, these lines would bisect the \angle° at A and E.

Again, in the \triangle^{8} FCH, FCK,
Because $\left\{\begin{array}{c}\text { the } \angle F C H=\text { the } \angle F C K, \\ \text { and } \quad \angle F H C=\text { the } \angle F K C, \text { being rt. angles ; } \\ \text { also FC is common } ;\end{array}\right.$

$$
\therefore F H=F K \text {. }
$$

I. 26.

Similarly if FG, FM, FL be drawn perp. to BA, AE, ED, it may be shewn that the five perpendiculars drawn from F to the sides of the pentagon are all equal.

With centre F , and radius FH , describe a circle ; this circle must pass through the points $\mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{G}$; and it will be touched at these points by the sides of the pentagon, for the \angle^{8} at $\mathrm{H}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{G}$ are rt. \angle^{8}. Constr. \therefore the \odot HKLMG is inscribed in the given pentagon. Q.E.F.

Corollary. The bisectors of the angles of a regular pentagon meet at a point.

Note. In the same way it may be shewn that the bisectors of the angles of any regular polygon meet at a point. [See Ex. 1, p. 294.]
[For Exercises on Regular Polygons see p. 293.]

MISCELLANEOUS EXERCISES.

1. Two tangents $A B, A C$ are drawn from an external point A to a given circle: describe a circle to touch $A B, A C$ and the convex arc intercepted by them on the given circle.
2. $A B C$ is an isosceles triangle, and from the vertex A a straight line is drawn to meet the base at D and the circumference of the circumscribed circle at E : shew that $A B$ is a tangent to the circle circumscribed about the triangle $B D E$.
3. An equilateral triangle is inscribed in a given circle : shew that twice the square on one of its sides is equal to three times the area of the square inscribed in the same circle.
4. $A B C$ is an isosceles triangle in which each of the angles at B and C is double of the angle at A; shew that the square on $A B$ is equal to the rectangle $A B, B C$ with the square on $B C$.

Proposition 14. Problem.

To circumscribe a circle about a given regular pentagon.

Let $A B C D E$ be the given regular pentagon. It is required to circumscribe a circle about the figure ABCDE .

Construction. Bisect the $\angle^{s} B C D, C D E$ by CF, DF, intersecting at F.
I. 9 .

> Join FB, FA, FE.

Proof.

$$
\text { In the } \triangle^{8} B C F, D C F,
$$

Because $\left\{\begin{array}{c}B C=D C, \\ \text { and CF is common to both; } \\ \text { and the } \angle B C F=\text { the } \angle D C F ;\end{array} \quad\right.$ Constr.
But the $\angle C D F$ is half an angle of the regular pentagon :
\therefore also the $\angle C B F$ is half an angle of the regular pentagon: that is, $F B$ bisects the $\angle A B C$.
So it may be shewn that FA, FE bisect the \angle^{B} at A and E.
Now the \angle^{8} FCD, FDC are each half an angle of the given regular pentagon ;

$$
\therefore \text { the } \angle F C D=\text { the } \angle F D C, \quad \text { IV. Def. } 2 .
$$

$$
\therefore F C=F D
$$

I. 6 .

Similarly it may be shewn that FA, FB, FC, FD, FE are all equal.

With centre F , and radius FA , describe a circle: this circle must pass through the points A, B, C, D, E, and therefore is circumscribed about the pentagon. Q.E.F.

Note. In the same way a circle may be circumscribed about any regular polygon.
H.S.E.

Proposition 15. Problem.

To inscribe a regular hexagon in a given circle.

Let ABDF be the given circle.
It is required to inscribe a regular hexagon in the \odot ABDF.
Construction. Find G the centre of the © ABDF; iII. I. and draw a diameter AGD.
With centre D, and radius DG, describe the \odot EGCH.
Join CG, EG, and produce them to cut the $O^{c e}$ of the given circle at F and B.

Join AB, BC, CD, DE, EF, FA.
Then $A B C D E F$ shall be the required regular hexagon.
Proof. Now $G E=G D$, being radii of the $\odot A C E$; and $D G=D E$, being radii of the $\odot E H C$:
$\therefore G E, E D, D G$ are all equal, and the $\triangle E G D$ is equilateral.
Hence the $\angle E G D=$ one-third of two rt. angles. I. 32.
Similarly the $\angle D G C=$ one-third of two rt. angles.
But the \angle^{8} EGD, DGC, CGB together = two rt. angles ; I. 13.
\therefore the remaining $\angle \mathrm{CGB}=$ one third of two rt. angles.
\therefore the three $\angle^{8} E G D, D G C, C G B$ are equal to one another.
And to these angles the vert. opp. \angle^{8} BGA, AGF, FGE are respectively equal:
\therefore the $\angle^{\circ} E G D, D G C, C G B, B G A, A G F, F G E$ are all equal ;
\therefore the ares ED, DC, CB, BA, AF, FE are all equal: III. 26.
\therefore the chords $E D, D C, C B, B A, A F, F E$ are all equal : III. 29.
\therefore the hexagon is equilateral.
Again the are $F A=$ the arc $D E$:
Proved.

$$
\begin{aligned}
& \text { to each of these equals add the arc } A B C D \text {; } \\
& \text { then the are } F A B C D=\text { the are } A B C D E \text { : }
\end{aligned}
$$

lience the angles at the $O^{\text {ee }}$ which stand on these equal arcs are equal.
that is, the $\angle \mathrm{FED}=$ the $\angle \mathrm{AFE}$.
III, 27.
In like manner the remaining angles of the hexagon may be shewn to be equal.
\therefore the hexagon is equiangular ;
\therefore the hexagon ABCDEF is regular, and it is inscribed in the - ABDF. Q.E.F.

Corollary. The side of a regular hexagon inscribed in a circle is equal to the radius of the circle.

SUMMARY OF THE PROPOSITIONS OF BOOK IV.
The following summary will assist the student in remembering the sequence of the Propositions of Book IV.
(i) Of the sixteen Propositions of this Book, Props. 1, 10, 15, 16 deal with isolated constructions.
(ii) The remaining twelve Propositions may be divided into three groups of four each, as follows :
(a) Group 1. Props. 2, 3, 4, 5 deal with triangles and circles.
(b) Group 2. Props. 6, 7, 8, 9 deal with squares and circles.
(c) Group 3. Props. 11, 12, 13, 14 deal with pentagons and circles.
(iii) In each group the problem of inscription precedes the corresponding problem of ircumscription.

Further, each group deals with the inscription and circumscription of rectilineal figures first and of circles afterwards.

Proposition 16. Problem.
To inscribe a regular quindecagon in a given circle.

Let $A B C D$ be the given circle.
It is required to inscribe a regular quindecagon in the $\odot \operatorname{ABCD}$.
Construction.
In the $\odot A B C D$ inscribe an equilateral triangle, iv. 2. and let $A C$ be one of its sides.
In the same circle inscribe a regular pentagon, IV. 11. and let $A B$ be one of its sides.

Proof.
Now of such equal parts as the whole $O^{c e}$ contains fifteen,
the arc AC, which is one-third of the $O^{\text {ee }}$, contains five, and the arc $A B$, which is one-fifth of the $O^{\text {ce }}$, contains three;
\therefore their difference, the arc $B C$, contains two.
Bisect the arc BC at E:
III. 30.
then each of the arcs $B E, E C$ is one-fifteenth of the $O^{\text {ce. }}$.
\therefore if $B E$, EC be joined, and st. lines equal to them be placed successively round the circle, a regular quindecagon will be inscribed in it.
Q.E.F.

exercises on propositions 11-16.

1. Express in terms of a right angle the magnitude of an angle of the following regular polygons:
(i) a pentagon, (ii) a hexagon, (iii) an octagon, (iv) a decagon, (v) a quindecagon.
2. Any angle of a regular pentagon is trisected by the straight lines which join it to the opposite vertices.
3. In a polygon of n sides the straight lines which join any angular point to the vertices not adjacent to it, divide the angle into $n-2$ equal parts.
4. Shew how to construct on a given straight line (i) a regular pentagon, (ii) a regular hexagon, (iii) a regular octagon.
5. An equilateral triangle and a regular hexagon are inscribed in a given circle ; shew that
(i) the area of the triangle is half that of the hexagon;
(ii) the square on the side of the triangle is three times the square on the side of the hexagon.
6. $A B C D E$ is a regular pentagon, and $A C, B E$ intersect at H : shew that
(i) $\mathrm{AB}=\mathrm{CH}=\mathrm{EH}$.
(ii) $A B$ is a tangent to the circle circumscribed about the triangle BHC .
(iii) $A C$ and $B E$ cut one another in medial section.
7. The straight lines which join alternate vertices of a regular pentagon intersect so as to form another regular pentagon.
8. The straight lines which join alternate vertices of a regular polygon of n sides, intersect so as to form another regular polygon of n sides.

If $n=6$, shew that the area of the resulting hexagon is one-third of the given hexagon.
9. By means of iv. 16 , inscribe in a circle a triangle whose angles are as the numbers $2,5,8$.
10. Shew that the area of a regular hexagon inscribed in a circle is three-fourths of that of the corresponding circumscribed hexagon.

NOTE ON REGULAR POLYGONS.

The following propositions, proved by Euclid for a regular pentagon, hold good for all regular polygons.

1. The bisectors of the angles of any regular polygon are concurrent.

Let $\mathrm{D}, \mathrm{E}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ be consecutive angular points of a regular polygon of any number of sides.

Bisect the $\angle^{8} E A B, A B C$ by $A O, B O$, which intersect at O.

Join EO.

It is required to prove that EO bisects the $\angle \mathrm{DEA}$.
For in the $\triangle^{8} E A O, B A O$,
Because $\left\{\begin{array}{c}E A=B A, \text { being sides of a regular polygon; } \\ \text { and } A O \text { is common ; } \\ \text { and the } \angle E A O=\text { the } \angle B A O ;\end{array} \quad\right.$ Constr.
\therefore the $\angle O E A=$ the $\angle O B A$.
I. 4.

But the $\angle O B A$ is half the $\angle A B C$; Constr.
also the $\angle A B C=$ the $\angle D E A$, since the polygon is regular ;
\therefore the $\angle O E A$ is half the $\angle D E A$: that is, EO bisects the $\angle D E A$.
Similarly if O be joined to the remaining angular points of the polygon, it may be proved that each joining line bisects the angle to whose vertex it is drawn.

That is to say, the bisectors of the angles of the polygon meet at the point O.
Q.E.D.

Corollaries. Since the $\angle E A B=$ the $\angle A B C$;

$$
\begin{aligned}
\therefore O A & =O B . \\
O E & =O A .
\end{aligned}
$$

I. 6.

Similarly
Hence the bisectors of the angles of a regular polygon are all equal.
Therefore a circle described with centre O, and radius OA, will be circumscribed about the polygon.

Also it may be shewn, as in Proposition 13, that perpendiculars drawn from O to the sides of the polygon are all equal.

Therefore a circle described with centre O , and any one of these perpendiculars as radius, will be inscribed in the polygon.
2. If a polygon inscribed in a circle is equilateral, it is also equiangular.

Let $A B, B C, C D$ be consecutive sides of an equilateral polygon inscribed in the (.) ADK.

Then shall this polygon be equian!ular.
Because the chord $\mathrm{AB}=$ the chord DC. Hyp. \therefore the minor are $A B=$ the minor are DC. IIr. 28.
To each of these equals add the arc AKD :
then the arc $B A K D=$ the arc $A K D C$;
\therefore the angles at the $O^{\text {ce }}$, which stand on these equal arcs, are equal;
that is, the $\angle B C D=$ the $\angle A B C$. III. 27.

Similarly the remaining angles of the polygon may be shewn to be equal:
the polygon is equiangular.
Q. E.D.
3. If a polygon inscribed in a circle is equiangular, it is also equilateral, provided that the number of its sides is odd.
[Observe that Theorems 2 and 3 are only true of polygons inscribed in a circle.

Fig. 1.

Fig. 2.

The above figures are sufficient to shew that otherwise a polygon may be equilateral without being equiangular, Fig. 1; or equiangular without being equilateral, Fig. 2.]

Note. The following extensions of Euclid's constructions for Regular Polygons should be noticed.

By continual bisection of arcs, we are enabled to divide the circumference of a circle,
by means of Proposition 6, into 4, 8, 16, .., $2.2^{n}, \ldots$ equal parts; by means of Proposition 15 , into $3,6,12, \ldots, 3.2^{n}, \ldots$ equal parts; by means of Proposition 11, into $5,10,20, \ldots, 5.2^{n}, \ldots$ equal parts; by means of Proposition 16, into $15,30,60, \ldots, 15.2^{n}, \ldots$ equal parts.

Hence we can inscribe in a circle a regular polygon the number of whose sides is included in any one of the formulæ $2.2^{n}, 3.2^{n}$, $5.2^{n}, 15 \cdot 2^{n}, n$ being any positive integer. It has also been shewn (by Gauss, 1800) that a regular polygon of $2^{n}+1$ sides may be inscribed in a circle, provided $2^{n}+1$ is a prime number.

QUESTIONS FOR REVISION ON BOOK IV.

1. With what difference of meaning is the word inscribed used in the following cases?
(i) a triangle inscribed in a circle ;
(ii) a circle inscribed in a triangle.
2. What is meant by a cyclic figure? Shew that all triangles are cyclic.

What is the condition that a quadrilateral may be cyclic?
Shew that cyclic parallelograms must be rectangular.
3. Shew that the only regular figures which may be fitted together so as to form a plane surface are (i) equilateral triangles, (ii) squares, (iii) regular hexagons.
4. Employ the first Corollary of I. 32 to shew that in any regular polygon of n sides each interior angle contains $\frac{2(n-2)}{n}$ right angles ?
5. The bisectors of the angles of a regular polygon are concurrent. State the method of proof employed in this and similar theorems.
6. Shew that
(i) all squares inscribed in a given circle are equal ; and
(ii) all equilateral triangles circumscribed about a given circle are equal.
7. How many circles can be described to touch each of three given straight lines of unlimited length ?
(i) when no two of the lines are parallel ;
(ii) when two only are parallel;
(iii) when all three are parallel.
8. Prove that the greatest triangle which can be inscribed in a circle on a diameter as base, is one-fourth of the circumscribed square.
9. The radius of a given circle is 10 inches: find the length of a side of
(i) the circumscribed square;
[20 inches.]
(ii) the insciibed square;
$\sqrt{2}$ inches.]
(iii) the inscribed equilateral triangle ; [10 $\sqrt{3}$ inches.]
(iv) the circumscribed equilateral triangle; [$20 \sqrt{3}$ inches.]
(v) the inscribed regular hexagon.
[10 inches.]
Shew also that the areas of these figures are respectively 400 , $200,75 \sqrt{3}, 300 \sqrt{3}$, and $150 \sqrt{3}$ square inches.

THEOREMS AND EXAMPLES ON BOOK IV.

I. ON THE TRIANGLE AND ITS CIRCLES.

1. D, E, F are the points of contact of the inscribed circle of the triangle $A B C$, and D_{1}, E_{1}, F_{1} the points of contact of the escribed circle, which touches BC and the other sides produced: a, b, c denote the length of the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$; s the semi-perimeter of the triangle, and $\mathrm{r}, \mathrm{r}_{1}$ the radii of the inscribed and escribed circles.

Prove the following equalities:
(i) $\mathrm{AE}=\mathrm{AF}=s-a$, $\mathrm{BD}=\mathrm{BF}=s-b$, $\mathrm{CD}=\mathrm{CE}=s-c$,
(ii) $\mathrm{AE}_{1}=\mathrm{AF}_{1}=s$.
(iii) $\mathrm{CD}_{1}=\mathrm{CE}_{1}=s-b$, $\mathrm{BD}_{1}=\mathrm{BF}_{1}=s-c$.
(iv) $C D=B D_{1}$ and $B D=C D_{1}$.
(v) $E E_{1}=\mathrm{FF}_{1}=a$.
(vi) The area of the $\triangle A B C$

$$
=r s=r_{1}(s-a)
$$

2. In the triangle $A B C, 1$ is the centre of the inscribed circle, and $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ the centres of the escribed circles touching respectively the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ and the other sides produced.

Prove the following properties:
(i) The points \mathbf{A}, I, I_{1} are collinear: so are $\mathrm{B}, \mathrm{I}, \mathrm{I}_{2}$; and $\mathrm{C}, \mathrm{I}_{1} \mathrm{I}_{3}$.
(ii) The points $\mathrm{I}_{2}, \mathrm{~A}, \mathrm{I}_{3}$ are collinear ; so are $\mathrm{I}_{3}, \mathrm{~B}, \mathrm{I}_{1}$; ana $\mathrm{I}_{1}, \mathrm{C}, \mathrm{I}_{2}$.
(iii) The triangles $\mathrm{Bl}_{1} \mathrm{C}, \mathrm{Cl}_{2} \mathrm{~A}, \mathrm{Al}_{3} \mathrm{~B}$ are equiangular to ont another.
(iv) The triangle $I_{1} I_{2} I_{3}$ is equiantrular to the triangle formed by joining the points of contact of the inscribed circle.
(v) Of the four point.s I, I_{1}, I_{2}, I_{3} each is the orthocentre of the triangle whose vertices are the other three.
(vi) The four circles, each of which passes through three of the points I, I_{1}, I_{2}, I_{3}, are all equal.
3. With the notation of page 297 , shew that in a triangle $A B C$, if the angle at C is a right angle,

$$
r=s-c ; r_{1}=s-b ; \quad r_{2}=s-a ; r_{3}=s .
$$

4. With the figure given on page 298 , shew that if the circles whose centres are I, I_{1}, I_{2}, I_{3} touch $B C$ at D, D_{1}, D_{2}, D_{3}, then
(i)

$$
\begin{align*}
& \mathrm{DD}_{2}=\mathrm{D}_{1} \mathrm{D}_{3}=b \\
& \mathrm{D}_{2} \mathrm{D}_{3}=b+c \tag{iii}
\end{align*}
$$

(ii) $\mathrm{DD}_{3}=\mathrm{D}_{1} \mathrm{D}_{2}=c$.
(iv) $\mathrm{DD}_{1}=b \sim c$.
5. Shew that the orthocentre and vertices of a triangle are the centres of the inscribed and escribed circles of the pedal triangle.
[See Ex. 20, p. 243.]
6. Given the base and vertical angle of a triangle, find the locus of the centre of the inscribed circle.
[See Ex. 36, p. 246.]
7. Given the base and vertical angle of a triangle, find the locus of the centre of the escribed circle which touches the base.
8. Given the base and vertical angle of a triangle, shew that the centre of the circumscribed circle is fixed.
9. Given the base $B C$, and the vertical angle A of a triangle, find the locus of the centre of the escribed circle which touches AC.
10. Given the base, the vertical angle, and the radius of the inscribed circle ; construct the triangle.
11. Given the base, the vertical angle, and the radius of the escribed circle, (i) which touches the base, (ii) which touches one of the sides containing the vertical angle; construct the triangle.
12. Given the base, the vertical angle, and the point of contact with the base of the inscribed circle ; construct the triangle.
13. Given the base, the vertical angle, and the point of contact with the base, or base produced, of an escribed circle ; construct the triangle.
14. From an external point A two tangents $A B, A C$ are drawn to a given circle; and the angle BAC is bisected by a straight line which meets the circumference in I and I_{1} : shew that I is the centre of the circle inscribed in the triangle $A B C$, and I_{1} the centre of one of the escribed circles.
15. I is the centre of the circle inscribed in a triangle, and $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ the centres of the escribed circles; shew that $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ are bisected by the circumference of the circumscribed circle.
16. $A B C$ is a triangle, and I_{2}, I_{3} the centres of the escribed circles which touch $A C$, and $A B$ respectively : shew that the points $\mathrm{B}, \mathrm{C}, \mathrm{I}_{2}, \mathrm{I}_{3}$ lie upon a circle whose centre is on the circumference of the circle circumscribed about $A B C$.
17. With three given points as centres describe three circles touching one another two by two. How many solutions will there be ?
18. Two tangents $A B, A C$ are drawn to a given circle from an external point A; and in $A B, A C$ two points D and E are taken so that $D E$ is equal to the sum of $D B$ and $E C$: shew that $D E$ touches the circle.
19. Given the perimeter of a triangle, and one angle in magnitude and position: shew that the opposite side always touches a fixed circle.
20. Given the centres of the three escribed circles; construct the triangle.
21. Given the centre of the inscribed circle, and the centres of two escribed circles ; construct the triangle.
22. Given the vertical angle, perimeter, and the length of the bisector of the vertical angle; construct the triangle.
23. Given the vertical angle, perimeter, and altitude ; construct the triangle.
24. Given the vertical angle, perimeter, and radius of the inscribed circle; construct the triangle.
25. Given the vertical angle, the radius of the inscribed circle, and the length of the perpendicular from the vertex to the base; construct the triangle.
26. Given the base, the difference of the sides containing the vertical angle, and the radius of the inscribed circle ; construct the triangle.
[See Ex. 10, p. 276.]
27. Given a vertex, the centre of the circumscribed circle, and the centre of the inscribed circle, construct the triangle.
28. In a triangle $A B C, I$ is the centre of the inscribed circle; shew that the centres of the circles circumscribed about the triangles BIC, CIA, AIB lie on the circumference of the circle circumscribed about the given triangle.
29. In a triangle $A B C$, the inscribed circle touches the base $B C$ at D; and r, r_{1} are the radii of the inscribed circle and of the escribed circle which touches $B C$: shew that $r, r_{1}=B D$. DC.
30. $A B C$ is a triangle, D, E, F the points of contact of its inscribed circle; and $D^{\prime} E^{\prime} F^{\prime}$ is the pedal triangle of the triangle $D E F$: shew that the sides of the triangle $D^{\prime} E^{\prime} F^{\prime}$ are parallel to those of ABC.
31. In a triangle $A B C$ the inscribed circle touches $B C$ at D. Shew that the circles inscribed in the triangles $A B D, A C D$ touch one another.

On the Nine-Points Circle.

32. In any triangle the middle points of the sides, the feet of the perpendiculars draun from the vertices to the opposite sides, and the middle points of the lines joining the orthocentre to the vertices are concyclic.

In the $\triangle A B C$, let X, Y, Z be the middle points of the sides $B C$, $C A, A B$; let D, E, F be the feet of the perps drawn to these sides from A, B, C; let O be the orthocentre, and α, β, γ the middle points of OA, OB, OC.
Then shall the nine points $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, D, E, F, a, β, γ be concyclic.
Join XY, XZ, Xa, Ya, Za.
Now from the $\triangle A B O$, since $\mathrm{AZ}=\mathrm{ZB}$, and $\mathrm{A} \alpha=\alpha \mathrm{O}$, Hyp.
 $\therefore Z_{a}$ is par ${ }^{1}$ to BO. Ex. 2, p. 104.

And from the $\triangle A B C$, since $B Z=Z A$, and $B X=X C$, Hyp. $\therefore Z X$ is par ${ }^{1}$ to $A C$.
But BO produced makes a rt. angle with AC ; Hyp. \therefore the $\angle X Z \alpha$ is a rt. angle.
Similarly, the $\angle X Y a$ is a rt. angle. I. 29. \therefore the points $\mathrm{X}, \mathrm{Z}, a, \mathrm{Y}$ are concyclic :
that is, a lies on the $\bigcirc^{\text {ee }}$ of the circle, which passes through X, Y, Z; and $X a$ is a diameter of this circle.

Similarly it may be shewn that β and γ lie on the $\cap^{\text {ce }}$ of the circle which passes through $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.

Again, since $a \mathrm{DX}$ is a rt. angle, Hyp.
\therefore the circle on $\mathrm{X} a$ as diameter passes through D.
Similarly it may be shewn that E and F lie on the circumference of the same circle.
\therefore the points $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{D}, \mathrm{E}, \mathrm{F}, a, \beta ; \gamma$ are concyclic. Q.E.D.
From this property the circle which passes through the middle points of the sides of a triangle is called the Nine-Points Circle; many of its properties may be derived from the fact of its being the circle circumscribed about the pedal triangle.

33. To prove that

(i) the centre of the nine-points circle is the middle point of the straight line which joins the orthocentre to the circumscribed centre.
(ii) the radius of the nine-points circle is half the radius of the circumscribed circle.
(iii) the centroid is collinear with the circumscribed centre, the nine-points centre, and the orthocentre.

In the $\triangle A B C$, let X, Y, Z be the middle points of the sides; D, E, F the feet of the perp ${ }^{8}$; O the orthocentre; S and N the centres of the circumscribed and nine-points circles respectively.
(i) To prove that N is the middle point of SO.

It may be shewn that the perp. to $X D$ from its middle point bisects SO ;

Ex. 14, p. 106.
Similarly the perp. to EY at its
 middle point bisects SO :
that is, these perp ${ }^{8}$ intersect at the middle point of SO :
And since XD and EY are chords of the nine-points circle,
\therefore the intersection of the lines which bisect $X D$ and EY at rt. angles is its centre :
\therefore the centre N is the middle point of SO
(ii) To prove that the radius of the nine-points circle is half the radius of the circumscribed circle.

By the last Proposition, $\mathrm{X} \alpha$ is a diameter of the nine-points circle. \therefore the middle point of $X \alpha$ is its centre :
but the middle point of SO is also the centre of the nine-points circle.
(Proved.)
Hence $X a$ and SO bisect one another at N.
Then from the $\triangle^{8} S N X, O N a$,

$$
\text { Because }\left\{\begin{aligned}
& S N=\mathrm{ON}, \\
& \text { and } N X=\mathrm{N} \alpha, \\
& \text { and the } \angle \mathrm{SNX}=\text { the } \angle \mathrm{ON} \alpha ; \\
& \therefore \mathrm{SX}=\mathrm{O} a \\
&=\mathrm{A} a . \\
& \text { and } S X \text { is also } \text { par }^{1} \text { to } A \alpha, \\
& \therefore \mathrm{SA}=\mathrm{X} a .
\end{aligned}\right.
$$

I. 15.
I. 4.

1. 33.

But SA is a radius of the circumscribed circle ; and X_{a} is a diameter of the nine-points circle;
\therefore the radius of the nine-points circle is half the radius of the circumscribed circle.
(iii) To prove thal the centroid is collincar with points $\mathrm{S}, \mathrm{N}, \mathrm{O}$. Join $A X$ and draw afy parl to SO. Let AX meet SO at G .
Then from the $\triangle A G O$, since $A a=a O$, and a at is par ${ }^{1}$ to $O G$,

And from the $\triangle X a g$, since $a N=N X$, and $N G$ is parl to $a y$,
$\therefore \quad, \mathrm{G}=\mathrm{GX}$.
$\therefore A G=\frac{2}{3}$ of $A X$;
$\therefore \mathrm{G}$ is the centroid of the triangle ABC . Ex. 4, p. 113. That is, the centroid is collinear with the points S, N, O. Q.e.d.
34. Given the base and vertical angle of a triangle, find the locus of the certre of the nine-points circle.
35. The nine-points circle of any triangle $A B C$, whose orthocentre is O, is also the nine-points circle of each of the triangles $\mathrm{AOB}, \mathrm{BOC}, \mathrm{COA}$.
36. If I, I_{1}, I_{2}, I_{3} are the centres of the inscribed and escribed circles of a triangle $A B C$, then the circle circumscribed about $A B C$ is the nine-points circle of each of the four triangles formed by joining three of the points I, I_{1}, I_{2}, I_{3}.
37. All triangles which have the same orthocentre and the same circumscribed circle, have also the same nine-points circle.
38. Given the base and vertical angle of a triangle, shew that one angle and one side of the pedal triangle are constant.
39. Given the base and vertical angle of a triangle, find the locus of the centre of the circle which passes through the three escribed centres.

Note. For another important property of the Nine-points Circle see Miscellaneous Examples on Book VI., Ex. 60.

II. MISCELLANEOUS EXAMPLES.

1. If four circles are described to touch every three sides of a quadrilateral, shew that their centres are concyclic.
2. If the straight lines which bisect the angles of a rectilineal figure are concurrent, a circle may be inscribed in the figure.
3. Within a given circle describe three equal circles touching one another and the given circle.
4. The perpendiculars drawn from the centres of the three escribed circles of a triangle to the sides which they touch, are concurrent.
5. Given an angle and the radii of the inscribed and circumscribed circles; construct the triangle.
6. Given the base, an angle at the base, and the distance between the centre of the inscribed circle and the centre of the escribed circle which touches the base; construct the triangle.
7. In a given circle inscribe a triangle such that two of its sides may pass through two given points, and the third side be of given length.
8. In any triangle $A B C, I, I_{1}, I_{2}, I_{3}$ are the centres of the inscribed and escribed circles, and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are the centres of the circles circumscribed about the triangles BIC, CIA, AIB : shew that the triangle $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3}$ has its sides parallel to those of the triangle $\left.I_{1} I_{2}\right|_{3}$, and is one-fourth of it in area : also that the triangles ABC and $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3}$ have the same circumscribed circle.
9. O is the orthocentre of a triangle $A B C$: shew that

$$
\mathrm{AO}^{2}+\mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{CA}^{2}=\mathrm{CO}^{2}+\mathrm{AB}^{2}=d^{2}
$$

where d is the diameter of the circumscribed circle.
10. If from any point within a regular polygon of n sides perpendiculars are drawn to the sides, the sum of the perpendiculars is equal to n times the radius of the inscribed circle.
11. The sum of the perpendiculars drawn from the vertices of a regular polygon of n sides on any straight line is equal to n times the perpendicular drawn from the centre of the inscribed circle.
12. The area of a cyclic quadrilateral is independent of the order in which the sides are placed in the circle.
13. Given the orthocentre, the centre of the nine-points circle, and the middle point of the base ; construct the triangle.
14. Of all polygons of a given number of sides, which may be inscribed in a given circle, that which is regular has the maximum area and the maximum perimeter.
15. Of all polygons of a given number of sides circumscribed about a given circle, that which is regular has the minimum area and the minimum perimeter.
16. Given the vertical angle of a triangle in position and magnitude, and the sum of the sides containing it : find the locus of the centre of the circumscribed circle.
17. P is any point on the circumference of a circle circumscribed about an equilateral triangle $A B C$: shew that $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}$ is constant.
** Book V. is now very rarely read. The subject-matter, so far as it is introductory to Book VI., is dealt with in a simpler manner at page 317, in the chapter called 'Elementary Principles of Proportion.' The student is advised to proceed at once to that chapter, leaving Book V. in its stricter form to be studied at a later stage, if it is thought desirable.

BOOK V.

Book V. treats of Ratio and Proportion, and the method adopted is such as to place these subjects on a basis independent of arithmetical principles.

The following notation will be employed throughout this section.
Capital letters, A, B, C, \ldots will be used to denote the magnitudes themselves, not any numerical or algebraical measures of them, and small letters, m, n, p, \ldots will be used to denote whole numbers. Also it will be assumed that multiplication, in the sense of repeated addition, can be applied to any magnitude, so that $m . A$ or $m A$ will denote the magnitude A taken m times.

The symbol $>$ will be used for the words greater than, and $<$ for less than.

Definitions.

Definition 1. One magnitude is said to be a multiple of another, when the first contains the second an exact number of times.

Definition 2. One magnitude is said to be a submultiple of another, when the first is contained an exact number of times in the second.

The following properties of multiples will be assumed as selfevident.
(1) $m A>$, $=$, or $\langle m B$ according as $A>$, $=$, or $<B$; and conversely.
(2) $m A+m B+\ldots=m(A+B+\ldots)$.
(3) If $A>B$, then $m A-m B=m(A-B)$.
(4) $m A+n A+\ldots=(m+n+\ldots) A$.
(5) If $m>n$, then $m A-n A=(m-n) A$.
(6) $m \cdot n A=m n \cdot A=n m \cdot A=n \cdot m A$.

> H.S.E.

Definition 3. The Ratio of one magnitude to another of the same kind is the relation which the first bears to the second in respect of quantuplicity.

The ratio of A to B is denoted thus, $A: B$; and A is called the antecedent, B the consequent of the ratio.

The term quantuplicity denotes the capacity of the first magnitude to contain the second with or without remainder.

If the magnitudes are commensurable, their quantuplicity may be expressed numerically by observing what multiples of the two magnitudes are equal to one another.

Thus if $A=m a$, and $B=n a$, it follows that $n A=m B$. In this case $A=\frac{m}{n} B$, and the quantuplicity of A with respect to B is the arithmetical fraction $\frac{m}{n}$.

But if the magnitudes are incommensurable, no multiple of the first can be equal to any multiple of the second, and therefore the quantuplicity of one with respect to the other cannot exactly be expressed numerically: in this case it is determined by examining how the multiples of one magnitude are distributed among the multiples of the other.

Thus, let all the multiples of A be formed, the scale extending ad infinitum; also let all the multiples of B be formed and placed in their proper order of magnitude among the multiples of A. This forms the relative scale of the two magnitudes, and the quantuplicity of A with respect to B is estimated by examining how the multiples of A are distributed among those of B in their relative scale.

In other words, the ratio of A to B is known, if for all integral values of m we know the multiples $n B$ and $(n+1) B$ between which $m A$ lies.

In the case of two given magnitudes A and B, the relative scale of multiples is definite, and is different from that of A to C, if C differs from B by any magnitude however small.

For let D be the difference between B and C; then however small D may be, it will be possible to find a number m such that $m D>A$. In this case, $m B$ and $m C$ would differ by a magnitude greater than A, and therefore could not lie between the same two multiples of A; so that after a certain point the relative scale of A and B would differ from that of A and C.

Definition 4. Magnitudes are said to have a ratio to one another, when the less can be multiplied so as to exceed the other.

Defintion 5. The ratio of one magnitude to another is equal to that of a third magnitude to a fourth, when if any equimultiples whatever of the antecedents of the ratios are taken, and also any equimultiples whatever of the consequents, the multiple of one mitecedent is greater than, equal to, or less than that of its consequent, according as the multiple of the other antecedent is greater than, equal to, or less than that of its consequent.

Thus the ratio A to B is equal to that of C to D when $m \because\rangle,=$, or $\langle n D$ according as $m A>,=$, or $<n B$, whatever whole numbers m and n may be.

Again, let m be any whole number whatever, and n another whole number determined in such a way that either $m A$ is equal to $n B$, or $m A$ lies between $n B$ and $(n+1) B$; then the definition asserts that the ratio of A to B is equal to that of C to D if $m C=n D$ when $m A=n B$; or if $m C$ lies between $n D$ and $(n+1) D$ when $m A$ lies between $n B$ and $(n+1) B$.

In other words, the ratio of A to B is equal to that of C to D when the multiples of A are distributed among those of B in the same manner as the multiples of C are distributed among those of D.

When the ratio of A to B is equal to that of C to D the four magnitudes are called proportionals. This is expressed by saying " A is to B as C is to D," and the proportion is written

$$
A: B:: C: D, \text { or } A: B=C: D \text {. }
$$

A and D are called the extremes, B and C the means; also D is said to be a fourth proportional to A, B, and C.

Definition 6. Two terms in a proportion are said to be homologous when they are both antecedents, or both consequents of the ratios.

Definition 7. The ratio of one magnitude to another is greater than that of a third magnitude to a fourth, when it is possible to find equimultiples of the antecedents and equimultiples of the consequents such that while the multiple of the antecedent of the first ratio is greater than, or equal to, that of its consequent, the multiple of the antecedent of the second is not greater, or is less, than that of its consequent.

This definition asserts that if whole numbers m and n can be found such that while $m A$ is greater than $n B, m C$ is not greater than $n D$, or while $m A=n B, m C$ is less than $n D$, then the ratio of A to B is greater than that of C to D.

If A is equal to B, the ratio of A to B is called a ratio of equality.

If A is greater than B, the ratio of A to B is called a ratio of greater inequality.

If A is less than B, the ratio of A to B is called a ratio of less inequality.

Definition 8. Two ratios are said to be reclprocal when the antecedent and consequent of one are the consequent and antecedent of the other respectively; thus $B: A$ is the reciprocal of $A: B$.

Definition 9. Three magnitudes of the same kind are said to be proportionals, when the ratio of the first to the second is equal to that of the second to the third.

Thus A, B, C are proportionals if

$$
A: B:: B: C .
$$

B is called a mean proportional to A and C, and C is called a third proportional to A and B.

Definition 10. Three or more magnitudes are said to be in continued proportion when the ratio of the first to the second is equal to that of the second to the third, and the ratio of the second to the third is equal to that of the third to the fourth, and so on.

Definition 11. When there are any number of magnitudes of the same kind, the first is said to have to the last the ratio compounded of the ratios of the first to the second, of the second to the third, and so on up to the ratio of the last but one to the last magnitude.

For example, if A, B, C, D, E be magnitudes of the same kind, $A: E$ is the ratio compounded of the ratios $A: B, B: C, C: D$, and $D: E$.

This is sometimes expressed by the following notation :

$$
A: E=\left\{\begin{array}{l}
A: B \\
B: C \\
C: D \\
D: E
\end{array}\right.
$$

Definition 12. If there are any number of ratios, and a set of magnitudes is taken such that the ratio of the first to the second is equal to the first ratio, and the ratio of the second to the third is equal to the second ratio, and so on, then the first of the set of magnitudes is said to have to the last the ratio compounded of the given ratios.

Thus, if $A: B, C: D, E: F$ be given ratios, and if P, Q, R, S be magnitudes taken so that
then

$$
\begin{aligned}
& P: Q:: A: B, \\
& Q: R: C: D, \\
& R: S:: E: F ; \\
& P: S=\left\{\begin{array}{l}
A: B \\
C: D \\
E: F .
\end{array}\right.
\end{aligned}
$$

Definition 13. When three magnitudes are proportionals, the first is said to have to the third the duplicate ratio of that which it has to the second.

Thus if

$$
A: B:: B: C,
$$

then A is said to have to C the duplicate ratio of that which it has to B.

Since

$$
A: C=\left\{\begin{array}{l}
A: B \\
B: C
\end{array}\right.
$$

it is clear that the ratio compounded of two equal ratios is the duplicate ratio of either of them.

Definition 14. When four magnitudes are in continued proportion, the first is said to have to the fourth the triplicate ratio of that which it has to the second.

It may be shewn as above that the ratio compounded of three equal ratios is the triplicate ratio of any one of them.

PROPOSITIONS.

Obs. Of the propositions of Book V., which, it may be noticed are all theorems, we here give only the more important.

Proposition 1.

Ratios which are equal to the same ratio are equal to one another. Let $A: B:: P: Q$, and also $C: D:: P: Q$; then shall $A: B:: C: D$.
For it is evident that two scales or arrangements of multiples which agree in every respect with a third scale, will agree with one another.

Proposition 2.

If two ratios are equal, the antecedent of the second is greater than, equal to, or less than its consequent according as the antecedent of the first is greater than, equal to, or less than its consequent.

Let

$$
A: B:: C: D
$$

then
$C>,=$, or $<D$,
according as
$A>,=$, or $<B$.
This follows at once from Def. 5, by taking m and n each equal to unity.

Proposition 3.

Invertendo or Inversely. If two ratios are equal, their reciprocal ratios are equal.

Let

$$
A: B:: \alpha: D,
$$

then shall

For, by hypothesis, the multiples of A are distributed among those of B in the same manner as the multiples of C are among those of D.
therefore also, the multiples of B are distributed among those of A in the same manner as the multiples of D are among those of C.

That is, $B: A:: D: C$.

Note. This proposition is sometimes enunciated thus:
If four magnitudes are proportionals, they are also proportionals when taken inversely.

Proposition 4.

Equal magnitudes have the same ratio to the same magnitude; and the same magnitude has the same ratio to equal magnitudes.

Let A, B, C be three magnitudes of the same kind, and let A be equal to B;
then shall

$$
A: C:: B: C
$$

$$
\text { and } \quad C: A:: C: B
$$

Since $A=B$, their multiples are identical and therefore are distributed in the same way among the multiples of C.

$$
\begin{array}{rr}
\therefore A: C:: B: C, & D e f .5 . \\
C: A:: C: B . & \text { v. } 3 .
\end{array}
$$

\therefore also, invertendo, $\quad C: A:: C: B$.

Proposition 5.

Of two unequal maynitıdes, the greater has a greater ratio to a third magnitude than the less has; and the same magnitude has a greater ratio to the less of two magnitudes than it has to the greater.

First,

$$
\text { let } A \text { be }>B \text {; }
$$

then shall

$$
A: C \text { be }>B: C
$$

Since $A>B$, it will be possible to find m such that $m A$ exceeds $m B$ by a magnitude greater than C;
hence if $m A$ lies between $n C$ and $(n+1) C, m B<n C$:

$$
\text { and if } m A=n C \text {, then } m B<n C \text {; }
$$

$$
\therefore A: C>B: C .
$$

Def. 7.

Secondly, \quad let B be $<A$;
then shall $C: B$ be $>C: A$.
For taking m and n as before,

$$
n C>m B, \text { while } n C \text { is not }>m A \text {; }
$$

$\therefore C: B>C: A$.
Def. 7.

Proposition 6.

Magnitudes which have the same ratio to the same magnitude are equal to one another ; and those to which the same magnitude has the same ratio are equal to one another.

First,
then shall

$$
\text { let } \begin{gathered}
A: C:: B: C ; \\
A=B .
\end{gathered}
$$

$$
\text { For if } A>B \text {, then } A: C>B: C \text {, }
$$

$$
\text { and if } B>A \text {, then } B: C>A: C \text {, }
$$

$$
\text { v. } 5 .
$$

which contradict the hypothesis ;

$$
\therefore A=B .
$$

Secondly, then shall

$$
\begin{gathered}
\text { let } C: A:: C: B ; \\
A=B .
\end{gathered}
$$

$$
\text { Because } C: A:: C: B \text {, }
$$

$$
A: C:: B: C
$$

$$
\therefore A=B \text {, }
$$

by the first part of the proof.

Proposition 7.

That magnitude which has a greater ratio than another has to the same magnitude is the greater of the two; and that magnitude to which the same has a greater ratio than it has to another magnitude is the less of the two.

First,
then shall
For if $A=B$, then $\quad A: C:: B: C$,

$$
A: C:: B: C,
$$ which is contrary to the hypothesis.

And if $A<B$, then $A: C<B: C$; which is contrary to the hypothesis ;

$$
\therefore A>B .
$$

$$
\begin{aligned}
& \text { let } A: C \text { be }>B: C \text {; } \\
& A \text { be }>B \text {. }
\end{aligned}
$$

Secondly, \quad let $C: A$ be $>C: B$;
then shall

$$
A \text { be }<B
$$

For if $A=B$, then $\quad C: A:: C: B$,
which is contrary to the hypothesis.
And if $A>B$, then $\quad C: A<C: B$;
which is contrary to the hypothesis ;

$$
\therefore A<B .
$$

Proposition 8.

Magnitudes have the same ratio to one another which their equimultiples have.

Let A, B be two magnitudes;
then shall

$$
A: B:: m A: m B .
$$

If p, q be any two whole numbers,
then $m \cdot p A>,=$ or $<m \cdot q B$ according as $p A>,=$, or $<q B$. But $m \cdot p A=p . m A$, and $m \cdot q B=q \cdot m B$;

$$
\therefore p \cdot m A>,=, \text { or }<q \cdot m B
$$

according as $p A>,=$, or $<q B$;

$$
\therefore A: B:: m A: m B .
$$

Cor. Let $A: B:: C: D$.
Then since $A: B:: m A: m B$, and $C: D:: n C: n D$;

$$
\therefore m A: m B:: n C: n D .
$$

Proposition 9.

If two ratios are equal, and any equirnultiples of the antecedents and also of the consequents are taken, the multiple of the first antecedent has to that of its consequent the same ratio as the multiple of the other antecedent has to that of its consequent.

$$
\begin{aligned}
& \text { Let } A: B:: C: D ; \\
& m A: n B: m C: n D .
\end{aligned}
$$

Let p, q be any two whole numbers ;
then because $A: B:: C: D$,

$$
p m \cdot C>,=\text {, or }<q n \cdot D
$$

according as $p m \cdot A>,=$, or $<q n \cdot B$,
Def. 5.
that is, $p \cdot m C>,=$, or $<q \cdot n D$,
according as $p \cdot m A>,=$, or $<q \cdot n B$;

$$
\therefore m A: n B:: m C: n D .
$$

Proposition 10.
If four magnitudes of the same kind are proportionals, the first is greater than, equal to, or less than the third, according as the second is greater than, equal to, or less than the fourth.

Let A, B, C, D be four magnitudes of the same kind such that

$$
\begin{aligned}
& A: B: C: D \\
& \text { then } A>=, \text { or }<C \\
& \text { according as } B>=, \text { or }<D . \\
& \text { If } B>D, \\
& \text { but } A: B: B: D \\
& \therefore A: D<A: D: \\
& \therefore A \\
& \therefore A>C: D ; \\
& \therefore A \\
& \therefore C . \text { v. } 5 \\
&
\end{aligned}
$$

Similarly it may be shewn that
if $B<D$, then $A<C$,
and if $B=D$, then $A=C$.

Proposition 11.

Alternando or Alternately. If four magnitudes of the same kind are proportionals, they are also proportionals when taken alternately.

Let A, B, C, D be four magnitudes of the same kind such that
then shall

$$
\begin{aligned}
& A: B:: C: D ; \\
& A: C:: B: D .
\end{aligned}
$$

$$
\begin{array}{rlr}
\text { Because } A: B:: m A & : m B, & \text { v. } 8 . \\
\quad \text { and } C: D: & : n C & : n D \\
\therefore m A: m B & : n C & : n D . \\
\therefore m A> & =, \text { or }<n C & \text { v. } 1 .
\end{array}
$$

according as $m B>,=$, or $<n D$.
And m and n are any whole numbers;

$$
\therefore A: C:: B: D
$$

Proposition 12.

Addendo. If any number of magnitudes of the same kind are proportionals, as one of the antecedents is to its consequent, so is the sum of the antecedents to the sum of the consequents.

Let A, B, C, D, E, F, \ldots be magnitudes of the same kind such that

$$
A: B:: C: D:: E: F:: \ldots \ldots ;
$$

then shall $A: B:: A+C+E+\ldots: B+D+F+\ldots$.
Because $A: B:: C: D:: E: F:: \ldots$,
\therefore according as $m A>,=$, or $<n B$,
so is $m C>,=$, or $<n D$,
and $m E>$, $=$, or $<n F$,
\therefore so is $m A+m C+m E+\ldots>,=$, or $<n B+n D+n F+\ldots$

$$
\text { or } m(A+C+E+\ldots)>,=\text {, or }<n(B+D+F+\ldots) \text {; }
$$

and m and n are any whole numbers;

$$
\therefore A: B:: A+C+E+\ldots: B+D+F+\ldots . \quad D e f .5 .
$$

Proposition 13.

Componendo. If four magnitudes are proportionals, the sum of the first and second is to the second as the sum of the third and fourth is to the fourth.

$$
\begin{aligned}
& \text { Let } A: B:: C: D ; \\
& A+B: B: C+D: D .
\end{aligned}
$$

then shall
If m be any whole number, it is possible to find another number n such that $m A=n B$, or lies between $n B$ and $(n+1) B$,
$\therefore m A+m B=m B+n B$, or lies between $m B+n B$ and $m B+(n+1) B$.
But $m A+m B=m(A+B)$, and $m B+n B=(m+n) B$;
$\therefore m(A+B)=(m+n) B$, or lies between $(m+n) B$ and $(m+n+1) B$.
Also because $A: B:: C: D$,

$$
\therefore m C=n D \text {, or lies between } n D \text { and }(n+1) D ; \quad D e f .5 .
$$

$\therefore m(C+D)=(m+n) D$ or lies between $(m+n) D$ and $(m+n+1) D$; that is, the multiples of $C+D$ are distributed among those of D in the same way as the multiples of $A+B$ among those of B;

$$
\therefore A+B: B:: C+D: D .
$$

Dividendo. In the same way it may be proved that

$$
\begin{array}{r}
A-B: B:: C-D: D, \\
\text { or } B-A: B:: D-C: D, \\
\text { according as } A \text { is }>\text { or }<B .
\end{array}
$$

Proposition 14.
Ex Equali. If there are two sets of marmitudes, such that the first is to the second of the first set as the first to the second of the other set, and the second to the tlird of the first set as the second to the third of the other, and so on to the last maynitude : then the first is to the last of the first set as the first to the last of the other.

First, let there be three magnitudes A, B, C of one set, and three, P, Q, R, of another set, and let $A: B:: P: Q$, and $B: C:: Q: R$;
then shall $A: C:: P: R$.
Because $A: B: P: Q$,

$$
\therefore m A: m B:: m P: m Q ; \quad \text { v. } 8, \operatorname{Cor} .
$$

and because $B: C:: Q: R$,

$$
\therefore m B: n C:: m Q: n R, \quad \text { v. } 9
$$

\therefore, invertendo,

$$
n C: m B:: n R: m Q
$$

v. 3.

Now, if

$$
m A>n C
$$

then $m A: m B>n C: m B$;
v. 5.
$\therefore m P: m Q>n R: m Q$,
and $\therefore m P>n R$.
v. 7.

Similarly $m P=$ or $<n R$ according as $m A=$ or $<n C$.

$$
\therefore A: C:: P: R . \quad \text { Def. } 5 .
$$

Secondly, let there be any number of magnitudes, A, B, C, \ldots L, M, of one set, and the same number $P, Q, R, \ldots Y, Z$, of another set, such that

$$
\begin{array}{r}
A: B:: P: Q, \\
B: C: Q: R, \\
\ldots: M:: Y: Z \\
L: M \\
\text { then shall } A: M:: P: Z . \\
\text { For } A: C:: P: R, \\
\text { and } C: D:: R: S ; \\
\text { and bo on, until finally } A: D: P: P, \\
\text { aroved. } \\
\text { Hyp. }
\end{array}
$$

$$
\begin{array}{lr}
\text { Corollary. } & \text { If } A: B:: P: Q, \\
& \text { and } B: C:: R: P: \\
& \text { then } A: C:: R: Q .
\end{array}
$$

Proposition 15.		
If $A: B:: X: Y$, and $C: B:: Z: Y$;		
\therefore, invertendo,	For since $\begin{aligned} & C: B:: Z: Y, \\ & B: C: Y: Z . \end{aligned}$	$\begin{gathered} \text { Hyp. } \\ \text { v. } 3 . \end{gathered}$
	Also $A: B:: X: Y$,	
\therefore ex cequali,	$A: C:: X: Z$,	v. 14.
\therefore, componendo,	$A+C: C:: X+Z: Z$.	v. 13.
	Again, $C: B:: Z: Y$	Hyp.
\therefore ex aquali,	$A+C: B:: X+Z: Y$.	v. 14.

Proposition 16.

If two ratios are equal, their duplicate ratios are equal.

$$
\text { Let } A: B:: C: D \text {; }
$$

then shall the duplicate ratio of A to B be equal to that of C to D.
Let X be a third proportional to A and B, and Y a third proportional to C and D,
so that $A: B:: B: X$, and $C: D:: D: Y ;$
then because $A: B:: C: D$,

$$
\therefore B: X:: D: Y ;
$$

\therefore, ex æquali,

$$
A: X:: C: Y
$$

But $A: X$ and $C: Y$ are respectively the duplicate ratios of $A: B$ and $C: D$,

Def. 13.
\therefore the duplicate ratio of $A: B=$ that of $C: D$.
Note. The converse of this theorem may be readily proved; namely,

If the duplicates of two ratios are equal, the ratios themselves are equal.

ELEMENTARY PRINCIPLES OF PROPORTION.

INTRODUCTION TO BOOK VI.

1. The first four books of Euclid deal with the absolute equality or inequality of geometrical magnitudes. In Book VI. such magnitudes are compared by considering their ratio or relative greatness.
2. The meaning of the words ratio and proportion in their simplest arithmetical sense may be given as follows:
(i) The ratio of one number to another is the multiple or fraction which the first is of the second.
(ii) Four numbers are in proportion when the ratio of the first to the second is equal to the ratio of the third to the fourth
3. These definitions are however not strictly applicable to the purposes of Pure Geometry, for the following reasons:
(i) Pure Geometry deals only with magnitudes as represented by diagrams, without measuring them in terms of a common unit: in other words, it makes no use of number for the purpose of comparing magnitudes.
(ii) It commonly happens that Geometrical magnitudes of the same kind are incommensurable, that is, they are such that it is impossible to express them exactly in terms of some common unit. Nevertheless it is always possible to express the arithmetical ratio of two such magnitudes within any required degree of accuracy. [See Note, p. 131: also Hall and Knight's Elementary Algebra, Art. 289.]
4. Accordingly, the object of Euclid's Fifth Book is to establish the Theory of Proportion on a basis independent of number. But as Book V. is now very rarely read, we propose here merely to illustrate algebraically such principles of proportion as are required before proceeding to Book VI. The strict treatment of the subject given in Book V. may be studied at a later stage, if it is thought desirable.

Obs. In what follows the symbol $>$ will be used for the words greater than, and $<$ for less than.
5. The following definitions are selected from Book V.

Definition 1. One magnitude is said to be a multiple of another, when the first contains the second an exact number of times.

Thus $m a$ is a multiple of a, if m is any whole number.
Definition 2. One magnitude is said to be a submultiple of another, when the first is contained in the second an exact number of times.

Thus $\frac{a}{m}$ is a submultiple of a, if m is any whole number.
Definition 3. The ratio of one magnitude to another of the same kind is the relation which the first bears to the second in regard to quantity; this is measured by the fraction which the first is of the second.

Thus if two such magnitudes contain a and b units respectively, the ratio of the first to the second is expressed by the fraction $\frac{a}{b}$.

The ratio of a to b is generally denoted thus, $a: b$; and a is called the antecedent and b the consequent of the ratio.

The two magnitudes compared in a ratio must be of the same kind; for example, both must be lines, or both angles, or both areas. It is clearly impossible to compare the length of a straight line with a magnitude of a different kind, such as the area of a triangle.

Definition 5. Four quantities are in proportion, when the ratio of the first to the second is equal to the ratio of the third to the fourth.

When the ratio of a to b is equal to that of x to y, the four magnitudes are called proportionals. This is expressed by saying " a is to b as x is to y," and the proportion is written

$$
\begin{array}{r}
a: b:: x: y \\
\text { or } a: b=x: y
\end{array}
$$

Here a and y are called the extremes, and b and x the means.
(i) Algebraical Test of Proportion. The ratios $a: b$ and $x: y$ may be expressed algebraically by the fractions $\frac{a}{b}$ and $\frac{x}{y}$; thus the four magnitudes a, b, x, y are in proportion if

$$
\frac{a}{b}=\frac{x}{y} .
$$

(ii) Geometrical Test of Proportion. The ratio of one magnitude to another is equal to that of a third magnitude to a fourth, when if any equimultiples whatever of the antecedents of the ratios are taken, and also any equimultiples whatever of the consequents, the multiple of one antecedent is greater than, equal to, or less than that of its consequent, according as the multiple of the other antecedent is greater than, equal to, or less than that of its consequent.

Thus the ratio of a to b is equal to that of x to y, that is to say,

$$
a, b, x, y \text { are in proportion, }
$$

if $m x>,=$, or $<n y$,
according as $\quad m a>,=$, or $<n b$,
whatever whole numbers m and n may be.

Note. The Algebraical and Geometrical Tests of Proportion, though differing widely in method, really determine the same property; for each may be deduced from the other. This is fully explained on the following page.

COMPARISON BETWEEN THE ALGEBRAICAL AND GEOMETRICAL TESTS OF PROPORTION.
(i) If $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}$ satisfy the Algebraical test of proportion, to shew that they also satisfy the geometrical test.

By hypothesis

$$
\frac{a}{b}=\frac{x}{y} ;
$$

and, multiplying both sides by $\frac{m}{n}$, where m and n are any whole
numbers, we obtain

$$
\frac{m a}{n b}=\frac{m x}{n y} ;
$$

thus these fractions are both improper, or both proper, or both equal to unity;
hence $m x>,=$, or $<n y$, according as $m a>,=$, or $<n b$, which is the Geometrical test of proportion.
(ii) If $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}$ satisfy the Geometrical test of proportion, to shew that they also satisfy the Algebraical test.

By hypothesis $m x>,=$, or $<n y$, according as $m a>,=$, or $<n b$, it is required to prove that

$$
\frac{a}{b}=\frac{x}{y}
$$

If $\frac{a}{b}$ is not equal to $\frac{x}{y}$, one of them must be the greater.
Suppose $\frac{a}{b}>\frac{x}{y}$; then it will be possible to find some fraction $\frac{n}{m}$ which lies between them, n and m being positive integers.

Hence

$$
\begin{equation*}
\frac{a}{b}>\frac{n}{m}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x}{y}<\frac{n}{m} \tag{2}
\end{equation*}
$$

From (1),

$$
m a>n b \text {; }
$$

from (2),

$$
m x<n y ;
$$ and these contradict the hypothesis.

Therefore $\frac{a}{b}$ and $\frac{x}{y}$ are not unequal ; that is $\frac{a}{b}=\frac{x}{y}$.
Definition 6. Two terms in a proportion are said to be homologous, when they are both antecedents or both consequents of the ratios.

Thus if

$$
a: b:: x: y,
$$

a and x are homologous; also b and y are homologous.

Definition 8. Two ratios are said to be reciprocal, when the antecedent and consequent of one are respectively the consequent and antecedent of the other.

Thus $b: a$ is the reciprocal of $a: b$.
Definition 9. Three magnitudes of the same kind are said to be proportionals, when the ratio of the first to the second is equal to that of the second to the third.

Thus a, b, c are proportionals if

$$
a: b:: b: c .
$$

Here b is called a mean proportional to a and c; and c is called a third proportional to a and b.

When four magnitudes are in proportion, namely when

$$
a: b:: c: d,
$$

then d is called a fourth proportional to a, b, and c.
Definition 10. A series of magnitudes of the same kind are said to be in continued proportion, when the ratios of the first to the second, of the second to the third, of the third to the fourth, and so on, are all equal.

Thus a, b, c, d, e are in continued proportion, if

$$
a: b=b: c=c: d=d: e ;
$$

that is, if

$$
\frac{a}{b}=\frac{b}{c}=\frac{c}{c}=\frac{d}{e} .
$$

Definition 11. When there are any number of magnitudes of the same kind, the first is said to have to the last the ratio compounded of the ratios of the first to the second, of the second to the third, and so on up to the ratio of the last but one to the last magnitude.

Thus if a, b, c, d, e are magnitudes of the same kind, then $a: e$ is the ratio compounded of the ratios

$$
a: b, \quad b: c, \quad c: d, \quad d: e .
$$

Note. Algebra defines the ratio compounded of given ratios as that formed by multiplying together the fractions which represent the given ratios. In the above illustration it will be seen that on multiplying together the ratios $\frac{a}{b}, \frac{b}{c}, \frac{c}{d}, \frac{d}{e}$ we obtain the ratio $\frac{a}{e}$.

> H.S.E.

Definition 13. When three magnitudes are proportionals, the first is said to have to the third the duplicate ratio of that which it has to the second.

Thus if

$$
a: b:: b: c
$$

then $a: c$ is said to be the duplicate of the ratio $a: b$.
Note. In Algelira the duplicate of the ratio $a: b$ is defined as the ratio of a^{2} to b^{2}.

It is easy to show that the two definitions are identical.
For if

$$
a: b:: b: c,
$$

then

Now

$$
\frac{a}{b}=\frac{b}{c}
$$

$$
\frac{a}{c}=\frac{a}{b} \cdot \frac{b}{c}=\frac{a}{b} \cdot \frac{a}{b}=\frac{a^{2}}{b^{2}}
$$

that is, $a: c:: a^{2}: l^{2}$.
6. The following theorems from Book V. are here proved algebraically. Reference is made to them in Book VI. under certain technical names.

Theorem 1. By Equal Ratios. Ratios which are equal to the same ratio are equal to one another.

That is, if $a: b=x: y$, and $c: d=x: y$;
then shall

$$
a: b=c: d .
$$

For, by hypothesis, $\frac{a}{b}=\frac{x}{y}$, and $\frac{c}{d}=\frac{x}{y}$;
hence

$$
\begin{gathered}
\frac{a}{b}=\frac{c}{d}, \\
a: b=c: d .
\end{gathered}
$$

or
Theorem 3. Invertendo, or Inversely. If four magnitudes are proportionals, they are also proportionals takien inversely.

That is, if

$$
\begin{aligned}
& a: b=x: y, \\
& b: a=y: x .
\end{aligned}
$$

then shull
Since, by hypothesis, $\frac{a}{b}=\frac{x}{y}$, it follows that $\frac{b}{a}=\frac{y}{x}$;
or

$$
b: a=y: x .
$$

Theorem 11. Alternando, or Alternately. If four magnitudes of the same kind are proportionals, they are also proportionals when taken alternately.

That is, if
then shall

$$
\begin{aligned}
& a: b=x: y, \\
& a: x=b: y .
\end{aligned}
$$

For, by hypothesis,

$$
\frac{a}{b}=\frac{x}{y}
$$

Multiplying both sides by $\frac{b}{x}$,
we have

$$
\begin{gathered}
\frac{a}{b} \cdot \frac{b}{x}=\frac{x}{y} \cdot \frac{b}{x} ; \\
\frac{a}{x}=\frac{b}{y} \\
a: x=b: y .
\end{gathered}
$$

Note. In this theorem the hypothesis requires that a and b shall be of the same kind, also that x and y shall be of the same kind; while the conclusion requires that a and x shall be of the same kind, and also b and y of the same kind.

Theorem 12. Addendo. In a series of equal ratios (the magnitudes being all of the same kind), as any antecedent is to its consequent so is the sum of the antecedents to the sum of the consequents.

That is, if $\quad a: x=b: y=c: z=\ldots$;
then shall $a: x=a+b+c+\ldots: x+y+z+\ldots$.
Let each of the equal ratios $\frac{a}{x}, \frac{b}{y}, \frac{c}{z} \ldots$ be equal to k.
Then $\quad a=k x, b=k y, c=k z, \ldots$;
\therefore, by addition,

$$
\begin{gathered}
a+b+c+\ldots=k(x+y+z+\ldots) \\
\therefore \frac{a+b+c+\ldots}{x+y+z+\ldots}=k=\frac{a}{x} \\
a: x=a+b+c+\ldots: x+y+z+\ldots
\end{gathered}
$$

Theorem 13. Componendo. If four magnitudes are proportionals, the sum of the first and second is to the second as the sum of the third and fourth is to the fourth.

That is, if

$$
\begin{aligned}
a: b & =x: y \\
a+b: b & =x+y: y
\end{aligned}
$$

For, by hypothesis,

$$
\frac{a}{b}=\frac{x}{y} ;
$$

$$
\therefore \frac{a}{b}+1=\frac{x}{y}+1, \text { or } \frac{a+b}{b}=\frac{x+y}{y} \text {; }
$$

that is,

$$
a+b: b=x+y: y
$$

Dividendo. Similarly it may be shewn that $a-b: b=x-y: y$.
Theorem 14. Ex 狌quali. If there are three magnitudes a, b, c of one set, and three magnitudes x, y, z of another set; and if these are so related that
and

$$
\left.\begin{array}{l}
a: b=x: y, \\
b: c=y: z, \\
a: c=x: z
\end{array}\right\}
$$

then shall
For, by hypothesis, $\frac{a}{b}=\frac{x}{y}$, and $\frac{b}{c}=\frac{y}{z}$;
\therefore, by multiplication, $\frac{a}{b} \cdot \frac{b}{c}=\frac{x}{y} \cdot \frac{y}{z}$;
that is,

$$
\frac{a}{c}=\frac{x}{z},
$$

or

$$
\text { - } a: c=x: z \text {. }
$$

Theorem 15. If two proportions have the same consequents,
that is, if

$$
\left.\begin{array}{rl}
a: b & =x: y, \\
c: b & =z: y,
\end{array}\right\},
$$

and
then shall
For, by hypothesis,

$$
\frac{a}{b}=\frac{x}{y} \text {, and } \frac{c}{b}=\frac{z}{y} ;
$$

\therefore, by addition,

$$
\frac{a+c}{b}=\frac{x+z}{y} ;
$$

or

$$
a+c: b=x+z: y .
$$

BOOK VI.

Definitions.

1. Two rectilineal figures are said to be equiangular to one another when the angles of the first, taken in order, are equal respectively to those of the second, taken in order.
2. Rectilineal figures are said to be similar when they are equiangular to one another, and also have the sides about the equal angles taken in order proportionals.

Thus the two quadrilaterals $A B C D, E F G H$ are similar if the angles at A, B, C, D are respectively equal to those at $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$, and if the following proportions hold :
$A B: B C:: E F: F G$,
$B C: C D:: F G: G H$,
$C D: D A:: G H: H E$,
$D A: A B:: H E: E F$

In these proportions, sides which are both antecedents or both consequents of the ratios are said to be homologous or corresponding.
[Def. 6, p. 320.]
Thus AB and EF are homologous sides ; so are BC and FG.
3. Two similar rectilineal figures are said to be similarly situated with respect to two of their sides when these sides are homologous.
4. Two figures are said to have their sides about one angle in each reciprocally proportional when a side of the first figure is to a side of the second as the remaining side of the second figure is to the remaining side of the first.
5. A straight line is said to be divided in extreme and mean ratio when the whole is to the greater segment as the greater segment is to the less.

Proposition 1. Theorem. [Euclid's Proof.]

The areas of triangles of the sume altitude are to one another as their bases.

Let $A B C, A C D$ be two triangles of the same altitude, namely the perpendicular from A to $B D$.

Then shall the $\triangle \mathrm{ABC}$: the $\triangle \mathrm{ACD}:: \mathrm{BC}: \mathrm{CD}$.
Produce BD both ways ;
and from. CB produced cut off any number of parts BG, GH , each equal to BC ;
and from CD produced cut off any number of parts $D K, K L$, LM, each equal to CD.

Join AH, AG, AK, AL, AM.
Since the $\triangle^{8} A B C, A B G, A G H$ are of the same altitude, and stand on the equal bases $C B, B G, G H$,
\therefore the $\triangle^{8} A B C, A B G, A G H$ are equal in area ; I. 38. \therefore the $\triangle A H C$ is the same multiple of the $\triangle A B C$ that $H C$ is of $B C$.
Similarly the $\triangle A C M$ is the same multiple of the $\triangle A C D$ that $C M$ is of $C D$.

> And if $H C=C M$,
> the $\triangle A H C=$ the $\triangle A C M$;
> and if $H C$ is greater than $C M$,
I. 38.
the $\triangle A H C$ is greater than the $\triangle A C M$; I. 38 , Cor. and if HC is less than CM , the $\triangle A H C$ is less than the $\triangle A C M$. I. 38, Cor .
Now since there are four magnitudes, namely, the $\triangle^{s} A B C$, $A C D$, and the bases $B C, C D$; and of the antecedents, any equimultiples have been taken, namely, the \triangle AHC
and the base HC ; and of the consequents, any equimultiples have been taken, namely the $\triangle A C M$ and the base CM ; and since it has been shewn that the $\triangle A H C$ is greater than, equal to, or less than the $\triangle A C M$, according as HC is greater than, equal to, or less than CM ;
\therefore the four original magnitudes are proportionals ; v. Def. 5 . that is,
the $\triangle A B C$: the $\triangle A C D$:: the base $B C$: the base CD. Q.E.D.
Corollary. The areas of parallelograms of the same altitude are to one another as their bases.

Let EC, CF be par ${ }^{\text {ms }}$ of the same altitude.
Then shall the par ${ }^{m}$ EC the par ${ }^{m} \mathrm{CF}:: \mathrm{BC}: \mathrm{CD}$,
Join BA, AD.
Then the $\triangle A B C$: the $\triangle A C D:: B C: C D$; Proved. but the par ${ }^{\mathrm{m}} E C$ is double of the $\triangle A B C, \quad$ I. 34. and the par ${ }^{1 \mathrm{~m}} \mathrm{CF}$ is double of the $\triangle \mathrm{ACD}$; \therefore the par ${ }^{\text {m }}$ EC : the par ${ }^{\text {m }} \mathrm{CF}:: B C: C D$. v. S.

Nore.

This proof of Proposition 1 is founded on Euclid's Test of Proportion, and therefore holds good whether the bases BC, CD are commensurable or otherwise.

The numerical treatment given on the following page applies in strict theory only to the former case; but the beginner would do well to accept it, at any rate provisionally, and thus postpone to a later reading the acknowledged difficulty of Euclid's Theory of Proportion.

Proposition 1. [Numerical Illustration.]
The areas of triangles of equal altitude are to one another as their bases.

Let ABC, DEF be two triangles between the same par ${ }^{\text {ls }}$, and therefore of equal altitude.
Then shall the $\triangle \mathrm{ABC}$: the $\triangle \mathrm{DEF}=$ the base BC : the base EF .
Suppose BC contains 4 units of length, and EF 3 units ; and let $B L, L M, M N, N C$ each represent one unit, as also ER, RS, SF.

Then $B C: E F=4: 3$.

Join AL, AM, AN ; also DR, DS.

Then the four $\triangle^{8} A B L, A L M, A M N, A N C$ are all equal ; for they stand on equal bases, and are of equal altitude.

$$
\therefore \text { the } \triangle A B C \text { is four times the } \triangle A B L \text {. }
$$

Similarly, the $\triangle D E F$ is three times the $\triangle D E R$.
But the $\triangle^{8} A B L$ and $D E R$ are equal, for they are on equal bases $B L, E R$, and of equal altitude;

$$
\text { hence the } \triangle \mathrm{ABC} \text { : the } \begin{aligned}
\triangle \mathrm{DEF} & =4: 3 \\
& =B C: E F .
\end{aligned}
$$

This reasoning holds good however many units of length the bases BC, EF contain.

Thus if $\mathrm{BC}=m$ units, and $\mathrm{EF}=n$ units, then, whatever whole numbers m and n represent,

$$
\begin{aligned}
& \text { the } \triangle A B C \text { : the } \triangle D E F=m: n \\
& =B C: E F \text {. }
\end{aligned}
$$

The corollary should then be proved as on page 327 .

Exereises on Proposition 1.

1. Two triangles of equal altitude stand on bases of $6 \cdot 3$ inches and $5 \cdot 4$ inches respectively ; if the area of the first triangle is $12 \frac{1}{4}$ square inches, find the area of the other.
[$10_{2}^{2} \mathrm{sq} . \mathrm{in}$.]
2. The areas of two triangles of equal altitude have the ratio $24: 17$; if the base of the first is 4.2 centimetres, find the base of the second to the nearest millimetre.
[$3.0 \mathrm{c} . \mathrm{m}$.]
3. Two triangles lying between the same parallels have bases of $16 \cdot 20$ metres and 20.70 metres; find to the nearest square centimetre the area of the second triangle, if that of the first is $50 \cdot 1204 \mathrm{sq}$. metres.
4. Assuming that the area of a triangle $=\frac{1}{2}$ base \times altitude, prove algebraically that
(i) Triangles of equal altitudes are proportional to their bases;
(ii) Triangles on equal bases are proportional to their altitudes.

Also deduce the second of these propositions geometrically from the first.
5. Two triangular fields lie on opposite sides of a common base; and their altitudes with respect to it are 4.20 chains and 3.71 chains. If the first field contains 18 acres, find the acreage of the whole quadrilateral.
[33.9 acres.]

Definition.

Two straight lines are cut proportionally when the segments of one line are in the same ratio as the corresponding segments of the other. [See definition, page 139.]

Fig. 1.

Fig. 2.

C D Y

Thus $A B$ and $C D$ are cut proportionally at X and Y, if

$$
A X: X B:: C Y: Y D .
$$

And the same definition applies equally whether X and Y divide $A B$ and $C D$ internally as in Fig. 1 or externally as in Fig. 2.

Proposition 2. Theorem.

If a straight line is drawn parallel to one side of a triangle, it cuts the other sides, or those sides produced, proportionally.

Conversely, if the sides, or the sides produced, are cut proportionally, the straight line which joins the points of section, is parallel to the remaining side of the triangle.

Let XY be drawn par ${ }^{1}$ to $B C$, one of the sides of the $\triangle A B C$.

Then shall $\quad B X: X A:: C Y: Y A$.
Join BY, CX.
Now the $\triangle^{s} B X Y, C X Y$ are on the same base $X Y$ and between the same par ${ }^{13} \mathrm{XY}, \mathrm{BC}$;
\therefore the $\triangle B X Y=$ the $\triangle C X Y ; \quad$ I. 37. and $A X Y$ is another triangle;
\therefore the $\triangle B X Y$: the $\triangle A X Y::$ the $\triangle C X Y:$ the $\triangle A X Y$. V. 4. But the $\triangle B X Y$: the $\triangle A X Y:: B X: X A$, vi. 1. and the $\triangle C X Y$: the $\triangle A X Y:: C Y: Y A$;

$$
\therefore B X: X A:: C Y: Y A .
$$

Conversely. Let $B X: X A:: C Y: Y A$, and let $X Y$ be joined. Then shall XY be pan to BC . As before, join BY, CX.
By hypothesis, BX: XA :: CY: YA ;
but $B X: X A$:: the $\triangle B X Y$: the $\triangle A X Y$, vi. 1. and $C Y: Y A$:: the $\triangle C X Y$: the $\triangle A X Y$;
\therefore the $\triangle B X Y$: the $\triangle A X Y::$ the $\triangle C X Y$: the $\triangle A X Y$. V. 1 .
\therefore the $\triangle B X Y=$ the $\triangle C X Y$;
v. 6. and these triangles are on the same base and on the same side of it;

$$
\therefore X Y \text { is par to } B C \text {. }
$$

I. 39.
Q.E.D,

EXERCISES.

1. Shew that every quadrilateral is divided by its diagonals into four triangles whose areas are proportionals.
2. If any two straight lines are cut by three parallel straight lines, they are cut proportionally.
3. From the point E in the common base of two triangles $A C B$ $A D B$, straight lines are drawn parallel to $A C, A D$, meeting $B C, B D$ at F, G : shew that $F G$ is parallel to $C D$.
4. In a triangle $A B C$ the straight line $D E F$ meets the sides $B C, C A, A B$ at the points D, E, F respectively, and it makes equal angles with $A B$ and $A C$: prove that

$$
B D: C D:: B F: C E .
$$

5. In a triangle $A B C, A D$ is drawn perpendicular to $B D$, the lisector of the angle at B : shew that a straight line through D parallel to $B C$ will bisect $A C$.
6. From B and C, the extremities of the base of a triangle $A B C$, straight lines $B E, C F$ are drawn to the opposite sides so as to intersect on the median from A : shew that $E F$ is parallel to $B C$.
7. From P, a given point in the side $A B$ of a triangle $A B C$, draw a straight line to $A C$ produced, so that it will be bisected by BC.
8. Find a point within a triangle such that, if straight lines be drawn from it to the three angular points, the triangle will be divided into three equal triangles.

Proposition 3. Theorem.

If the vertical angle of a triungle be bisected by a straight line which cuts the base, the segments of the base shall have to one another the same ratio as the remaining sides of the triangle.

Conversely, if the base be divided so that its segments have to one another the same ratio as the remaining sides of the triangle, the straight line drawn from the vertex to the point of section shall bisect the vertical angle.

In the $\triangle A B C$, let the $\angle B A C$ be bisected by $A X$, which meets the base at X .

Then shall

```
BX : XC :: BA : AC.
```

Through C draw CE par ${ }^{1}$ to XA, to meet BA produced at E .

$$
\begin{aligned}
& \text { Then because } X A \text { and } C E \text { are par }{ }^{1}, \\
& \therefore \text { the } \angle B A X=\text { the int. opp. } \angle A E C, \text { I. } 29 . \\
& \text { and the } \angle X A C=\text { the alt. } \angle A C E . \text { I. } 29 \\
& \text { But the } \angle B A X=\text { the } \angle X A C ; \text { Hyp. } \\
& \therefore \text { the } \angle A E C=\text { the } \angle A C E ; \text { I. } 6 .
\end{aligned}
$$

Again, because $X A$ is par to CE, a side of the $\triangle B C E$,

$$
\text { that is, } \begin{aligned}
& \therefore B X: X C:: B A: A E ; \\
& B X: X C:: B A: A C .
\end{aligned}
$$

$$
\text { vi. } 2 .
$$

Conversely. Let $\mathrm{BX}: \mathrm{XC}:: \mathrm{BA}: \mathrm{AC}$; and let AX be joined. Then sluall the $\angle B A X=$ the $\angle X A C$.
For, with the same construction as before, because $X A$ is par to $C E$, a side of the $\triangle B C E$,

$$
\therefore B X: X C:: B A: A E . \quad \text { VI. } 2 .
$$

But, by hypothesis,
B
$\therefore B A: A E:: B A: A C$
$B A: A C$
v. 1.
$\therefore A E=A C$;
\therefore the $\angle A C E=$ the $\angle A E C$.
I. 5.

But because XA is par to CE,
\therefore the $\angle \mathrm{XAC}=$ the alt. $\angle \mathrm{ACE} . \quad$ I. 29.
and the ext. $\angle \mathrm{BAX}=$ the int. opp. $\angle \mathrm{AEC} ;$ I. 29.
\therefore the $\angle B A X=$ the $\angle X A C$.
Q.E.D.

EXERCISES.

1. The side $B C$ of a triangle $A B C$ is bisected at D, and the angles $A D B, A D C$ are bisected by the straight lines $D E, D F$, meeting $A B, A C$ at E, F respectively : shew that $E F$ is parallel to $B C$.
2. Apply Proposition 3 to trisect a given finite straight line.
3. If the line bisecting the vertical angle of a triangle is divided into parts which are to one another as the base to the sum of the sides, the point of division is the centre of the inscribed circle.
4. $A B C D$ is a quadrilateral : shew that if the bisectors of the angles A and C meet in the diagonal $B D$, the bisectors of the angles B and D will meet on $A C$.
5. Construct a triangle having given the base, the vertical angle. and the ratio of the remaining sides.
6. Employ Proposition 3 to shew that the bisectors of the angles of a triangle are concurrent.
7. $A B$ is a diameter of a circle, $C D$ is a chord at right angles to it, and E any point in $C D ; A E$ and $B E$ are drawn and produced to cut the circle in F and G : shew that the quadrilateral CFDG has any two of its adjacent sides in the same ratio as the remaining two.

Proposition A. Theorem.

If one side of a triangle be produced, and the exterior angle so formed be bisected by a straight line which cuts the base produced, ihe segments between the point of section and the extremities of the base shall have to one another the same ratio as the remaining sides of the triangle.

Conversely, if the segments of the base produced have to one another the same ratio as the remaining sides of the triangle, the straight line drawn from the vertex to the point of section shall bisect the exterior vertical angle.

In the $\triangle A B C$ let $B A$ be produced to F, and let the exterior $\angle C A F$ be bisected by $A X$ which meets the base produced at X .

Then shall

$$
B X: X C:: B A: A C .
$$

> Through C draw CE par' to XA, and let CE meet BA at E.

Then because AX and CE are par ${ }^{1}$,
\therefore the ext. $\angle F A X=$ the int. opp. $\angle A E C$,
and the $\angle X A C=$ the alt. $\angle A C E$.
I. 29.

But the $\angle F A X=$ the $\angle X A C$;
Нyp
\therefore the $\angle A E C=$ the $\angle A C E$;
$\therefore A C=A E$.
I. 6.

Again, because $X A$ is par to $C E$, a side of the $\triangle B C E$,

$$
\begin{aligned}
\therefore & B X: X C:: B A: A E ; \\
& B X: X C:: B A: A C .
\end{aligned}
$$

that is,

Conversely. Let $\mathrm{BX}: \mathrm{XC}:: \mathrm{BA}: \mathrm{AC}$, and let AX be joined. Then shull the $\angle F A X=$ the $\angle X A C$.
For, with the same construction as before, beciuluse $A X$ is par ${ }^{1}$ to $C E$, a side of the $\triangle B C E$,

$$
\therefore B X: X C:: B A: A E .
$$

vi. 2.

But, by liypothesis, $\quad \mathrm{BX}: \mathrm{XC}:: \mathrm{BA}: \mathrm{AC}$;
$\therefore B A: A E:: B A: A C$; v. 1.
$\therefore A E=A C$;
\therefore the $\angle A C E=$ the $\angle A E C$.
I. 5.

But because $A X$ is par to $C E$,
\therefore the $\angle \mathrm{XAC}=$ the alt. $\angle \mathrm{ACE}$, and the ext. $\angle F A X=$ the int. opp. $\angle A E C ;$ I. 29. \therefore the $\angle F A X=$ the $\angle X A C . \quad$ Q.E.D.

Propositions 3 and A may be both included in one enunciation as follows :

If the interior or exterior vertical angle of a triangle be bisected by a straight line which also cuts the base, the base shall be divided internally or externally into stgments which have the same ratio as the other sides of the triangle.

Conversely, if the base be divided internally or externally into segments which have the same ratio as the other sides of the triangle, the straight line drawn from the point of division to the vertex will bisect the interior or exterior vertical angle.

EXERCISES.

1. In the circumference of a circle of which $A B$ is a diameter, a point P is taken ; straight lines $P C, P D$ are drawn equally inclined to $A P$ and on opposite sides of it, meeting $A B$ in C and D; shew that

$$
A C: C B:: A D: D B .
$$

2. From a point A straight lines are drawn making the angles $B A C, C A D, D A E$, each equal to half a right angle, and they are cut by a straight line $B C D E$, which makes $B A E$ an isosceles triangle : shew that $B C$ or $D E$ is a mean proportional between $B E$ and CD.
3. By means of Propositions 3 and A, prove that the straight lines bisecting one angle of a triangle internally, and the other two externally, are concurrent.

Proposition 4. Theorem.

If two triangles be equiangular to one another, the sides about the equal angles shall be proportionals, those sides which are opposite to equal angles being homologous.

Let the $\triangle A B C$ be equiangular to the $\triangle D C E$, having the $\angle A B C$ equal to the $\angle D C E$, the $\angle B C A$ equal to the $\angle C E D$, and consequently the $\angle C A B$ equal to the $\angle E D C$. Then shall the sides about these equal angles be proportionals, namely

$$
\begin{array}{r}
A B: B C:: D C: C E, \\
B C: C A:: C E: E D, \\
\text { and } A B: A C: D C: D E .
\end{array}
$$

Let the $\triangle D C E$ be placed so that its side CE may be contiguous to BC , and in the same straight line with it.

Then because the $\angle^{8} A B C, A C B$ are together less than two rt. angles,
\therefore the $\angle^{8} A B C$, DEC are together less than two rt. angles; $\therefore B A$ and ED will meet if produced. $A x .12$. Let them be produced and meet at F. Then because the $\angle \mathrm{ABC}=$ the $\angle \mathrm{DCE}, \quad H y p$. $\therefore B F$ is par to CD; I. 28. and because the $\angle A C B=$ the - DEC. \quad Hyp.
$\therefore A C$ is par to $F E$; I. 28.
\therefore FACD is a par ${ }^{\text {re }}$;
$\therefore A F=C D$, and $A C=F D$.
I. 34.

```
Again, because \(C D\) is par \({ }^{1}\) to \(B F\), a side of the \(\triangle E B F\),
        \(\therefore B C: C E:\) FD : DE ; VI. 2.
    but \(F D=A C\);
        \(B C: C E: A C: D E ;\)
    andi, alternately, \(\mathrm{BC}: \mathrm{CA}:: \mathrm{CE}: \mathrm{ED}\). V. 11
Again, because \(A C\) is par to \(F E\), a side of the \(\triangle F B E\),
        \(\therefore B A: A F:: B C: C E\); VI. 2.
        but \(A F=C D\);
            \(\therefore B A: C D:: B C: C E ;\)
    and, alternately, \(\mathrm{AB}: \mathrm{BC}:: \mathrm{DC}: \mathrm{CE}\).
        Also BC : CA :: CE : ED; Proved.
    \(\therefore\) ex aquali, \(\mathrm{AB}: \mathrm{AC}:: \mathrm{DC}: \mathrm{DE}\). V. 14.
    v. 11.
                                    Q.E.D.
```

[For Alternative Proof see Page 342.]

EXERCISES.

1. If one of the parallel sides of a trapezium is double the other, shew that the diagonals intersect one another at a point of trisection.
2. In the side $A C$ of a triangle $A B C$ any point D is taken : shew that if $A D, D C, A B, B C$ are bisected in E, F, G, H respectively, then $E G$ is equal to $H F$.
3. $A B$ and $C D$ are two parallel straight lines; E is the middle point of $C D ; A C$ and $B E$ meet at F, and $A E$ and $B D$ meet at G : shew that $F G$ is parallel to $A B$.
4. $A B C D E$ is a regular pentagon, and $A D$ and $B E$ intersect in F : shew that $A F: A E: A E: A D$.
5. In the figure of I. 43 shew that EH and GF are parallel, and that FH and GE will meet on CA produced.
6. Chords $A B$ and $C D$ of a circle are produced towards B and D respectively to meet in the point E, and through E, the line $E F$ is drawn parallel to $A D$ to meet $C B$ produced in F. Prove that $E F$ is a mean proportional between $F B$ and FC.
[^2]Proposition 5. Theorem.
If the sides of two triangles, taken in order about eacn of their angles, be proportionals, the triangles shall be equiangular to one another, having those angles equal which are opposite to the homologous sides.

Let the $\triangle^{8} A B C$, $D E F$ have their sides proportionals, so that
$A B: B C:: D E: E F$,
$B C: C A:: E F: F D$,
and consequently, ex aquali,

$$
A B: A C:: D E: D F .
$$

Then shall the $\triangle^{B} \mathrm{ABC}, \mathrm{DEF}$ be equiangular to one another.
At E in $F E$ make the $\angle F E G$ equal to the $\angle A B C ;$ I. 23. and at F in $E F$ make the $\angle E F G$ equal to the $\angle B C A$;
\therefore the remaining $\angle \mathrm{EGF}=$ the remaining $\angle \mathrm{BAC}$. I. 32 .
Then tne $\triangle^{8} A B C, G E F$ are equiangular to one another;

$$
\therefore A B: B C:: G E: E F .
$$

But, by hypothesis, $\quad \mathrm{AB}: \mathrm{BC}:: \mathrm{DE}: \mathrm{EF}$; $\therefore \mathrm{GE}: \mathrm{EF}:: \mathrm{DE}: \mathrm{EF}$;

Then in the \triangle^{s} GEF, DEF,
Because $\left\{\begin{array}{c}G E=D E, \\ G F=D F, \\ \text { and } E F \text { is common ; }\end{array}\right.$
\therefore the $\angle G E F=$ the $\angle D E F$,
I. 8 . and the $\angle \mathrm{GFE}=$ the $\angle \mathrm{DFE}$, and the $\angle E G F=$ the $\angle E D F$.

But the $\angle \mathrm{GEF}=$ the $\angle \mathrm{ABC} ; \quad$ Constr.
\therefore the $\angle D E F=$ the $\angle A B C$.
Similarly, the $\angle E F D=$ the $\angle B C A$;
\therefore the remaining $\angle \mathrm{FDE}=$ the remaining $\angle \mathrm{CAB} ; \mathrm{I} .32$. that is, the $\triangle D E F$ is equiangular to the $\triangle A B C$.
Q.E.D.

NOTE ON SIMILAR FIGURES.

Similar figures may be described as those which have the same shape.

For this, two conditions are necessary [see vi., Def. 2];
(i) the figures must have their angles equal each to each;
(ii) their sides about the equal angles taken in order must be proportional.

In the case of triangles we have learned that these conditions are not independent, for each follows from the other: thus
(i) if the triangles are equiangular, Proposition 4 proves the proportionality of their sides;
(ii) if the triangles have their sides proportional, Proposition 5 proves their equiangularity.

This, however, is not necessarily the case with rectilineal figures of more than three sides. For example, the first diagram in the margin shews two figures which are equiangular to one another, but which clearly have not their sides proportional; while the figures in the second diagram have their sides proportional, but are not equiangular to one another.

Proposition 6. Theorem.

If two triangles have one angle of the one equal to one angle of the other, and the sides about the equal angles proportionals, the triangles shall be similar.

In the $\triangle^{8} B A C, E D F$, let the $\angle B A C=$ the $\angle E D F$, and let $B A: A C:: E D: D F$.

Then shall the $\triangle^{8} B A C, E D F$ be similar.
At D in $F D$ make the $\angle F D G$ equal to the $\angle C A B: ~ I .23$. at F in $D F$ make the $\angle D F G$ equal to the $\angle A C B$;
\therefore the remaining $\angle D G F=$ the remaining $\angle A B C$. I. 32 .
Then the $\triangle^{s} B A C, G D F$ are equiangular to one another ; $\therefore B A: A C:: G D: D F$.
vi. 4.

But, by hypothesis, BA: AC :: $\mathrm{ED}: \mathrm{DF}$;

$$
\therefore \mathrm{GD}: \mathrm{DF}:: \mathrm{ED}: \mathrm{DF},
$$

$$
\therefore \mathrm{GD}=\mathrm{ED} .
$$

Then in the \triangle^{8} GDF, EDF,
Because $\left\{\begin{array}{c}G D=E D, \\ \text { and } D F \text { is common; } \\ \text { and the } \angle \mathrm{GDF}=\text { the } \angle E D F ;\end{array}\right.$
Constr.
\therefore the \triangle^{8} GDF, EDF are equal in all respects ; I. 4. so that the $\triangle E D F$ is equiangular to the $\triangle G D F$;
but the $\triangle G D F$ is equiangular to the $\triangle \mathrm{BAC}$; Constr.
\therefore the $\triangle E D F$ is equiangular to the $\triangle B A C$;
\therefore their sides about the equal angles are proportionals; vi. 4. that is, the $\triangle^{8} B A C, E D F$ are similar.

EXERCISES.

on Propositions 1 to 6.

1. Shew that the diagonals of a trapezium cut one another in the same ratio.
2. If three straight lines drawn from a point cut two parallel straight lines in A, B, C and P, Q, R respectively, prove that

$$
A B: B C:: P Q: Q R .
$$

3. From a point O, a tangent $O P$ is drawn to a given circle, and a secant $O Q R$ is drawn cutting it in Q and R; shew that
OQ : OP : : OP : OR.
4. If two triangles are on equal bases and between the same parallels, any straight line parallel to their bases will cut off equal areas from the two triangles.
5. If two straight lines PQ, XY intersect in a point O , so that $\mathrm{PO}: \mathrm{OX}:: \mathrm{YO}: \mathrm{OQ}$, prove that $\mathrm{P}, \mathrm{X}, \mathrm{Q}, \mathrm{Y}$ are concyclic.
6. On the same base and on the same side of it two equal triangles $A C B, A D B$ are described; $A C$ and $B D$ intersect in O, and through O lines parallel to DA and $C B$ are drawn meeting the base in E and F. Shew that $A E=B F$.
7. $B D, C D$ are perpendicular to the sides $A B, A C$ of a triangle $A B C$, and $C E$ is drawn perpendicular to $A D$, meeting $A B$ in E : shew that the triangles $A B C, A C E$ are similar.
8. $A C$ and $B D$ are drawn perpendicular to a given straight line $C D$ from two given points A and $B ; A D$ and $B C$ intersect in E, and $E F$ is perpendicular to $C D$: shew that $A F$ and $B F$ make equal angles with CD.
9. $A B C D$ is a parallelogram ; P and Q are points in a straight line parallel to $A B$; $P A$ and $Q B$ meet at R, and $P D$ and $Q C$ meet at S : shew that RS is parallel to AD.
10. In the sides $A B, A C$ of a triangle $A B C$ two points D, E are taken such that $B D$ is equal to $C E$; if $D E, B C$ produced meet at F, shew that $A B: A C:: E F: D F$.
11. Find a point the perpendiculars from which on the sides of a given triangle shall be in a given ratio.

Proposition 7. Theorem.

If two triangles have one angle of the one equal to one angle. of the other, and the sides about one other angle in each proportional, so that the sides opposite to the equal angles are humologous, then the third angles are either equal or supplementary; and in the former case the triangles are similar.

Fig. I.

Fig. 3.

Let $A B C, D E F$ be two triangles having the $\angle A B C$ equal to the $\angle D E F$, and the sides about the angles at A and D proportional, namely

$$
B A: A C:: E D: D F .
$$

Then shall the \angle^{8} ACB, DFE be either equal (as in Figs. 1 and 2) or supplementary (as in Figs. 1 and 3), and in the former case the triangles shall be similar.

$$
\begin{aligned}
& \text { If the } \angle \mathrm{BAC}=\text { the } \angle \mathrm{EDF}, \quad\left[\begin{array}{cr}
\text { Figs. } 1 \text { and 2.] } \\
\text { then the } \angle \mathrm{ACB}=\text { the } \angle \mathrm{DFE} ;
\end{array} \quad \text { I. } 32 .\right.
\end{aligned}
$$

and the \triangle^{s} are equiangular, and therefore similar. vi. 4. But if the $\angle B A C$ is not equal to the $\angle E D F$, [Figs. 1 and 3.] one of them must be the greater.
Let the $\angle E D F$ be greater than the $\angle B A C$.
At D in $E D$ make the $\angle E D F^{\prime}$ equal to the $\angle B A C$. [Fig. 3.]
Then the $\triangle^{5} B A C, E D F^{\prime}$ are equiangular, I. 32 .

$$
\therefore B A: A C:: E D: D F^{\prime} ;
$$

VI. 4.
but, by hypothesis, BA : AC :: ED : DF;

$$
\therefore E D: D F:: E D: D^{\prime},
$$

$$
\therefore \quad \mathrm{DF}=\mathrm{DF}^{\prime},
$$

$$
\therefore \text { the } \angle D F^{\prime}=\text { the } \angle D F^{\prime} F \text {. }
$$

But the $\angle^{8} D F^{\prime} F, D F^{\prime} E$ are supplementary, I. 13. \therefore the $\angle^{8} D^{\prime} F^{\prime}, D^{\prime} E$ are supplementary : that is, the $\angle^{8} D F E, A C B$ are supplementary. Q.E.D.

Corollaries to Proposition 7.

Three cases of this theorem deserve special attention.
It has been proved that if the angles ACB, DFE are not supplementary, they are equal.

Hence, in addition to the hypothesis of this theorem,
(i) If the angles ACB, DFE, opposite to the two homologous sides $A B, D E$ are both acute or both obtuse, they cannot be supplementary, and are therefore equal : or if one of them is a right angle, the other must also be a right angle (whether considered as supplementary or equal to it):
in either case the triangles are similar.
(ii) If the two given angles at B and E are right angles or obtuse angles, it follows that the angles ACB, DFE must be both acute, and therefore equal, by (i):
so that the triangles are similar.
(iii) If in each triangle the side opposite the given angle is not less than the other given side; that is, if AC and DF are not less than $A B$ and $D E$ respectively, then the angles ACB, DFE cannot be greater than the angles $A B C, D E F$, respectively ;
therefore the angles $A C B, D F E$, are both acute ;
hence, as above, they are equal;
and the triangles $A B C, D E F$ are similar.

Obs. We have given Euclid's demonstrations of Propositions 4, 5,6 ; but these propositions also admit of easy proof by the method of superposition.

As an illustration, we will apply this method to Proposition 4.

Proposition 4. [Alternative Prjof.]

If two triangles be equiangular to one another, the sides about the equal angles shall be proportionals, those sides which are opposite to equal angles being homologous.

Let the $\triangle A B C$ be equiangular to the $\triangle D E F$, having the $\angle A B C$ equal to the $\angle D E F$, the $\angle B C A$ equal to the $\angle E F D$, and consequently the $\angle \mathrm{CAB}$ equal to the $\angle \mathrm{FDE}$. I. 32. Then shall the sides about these equal angles be proportionals.

Apply the $\triangle A B C$ to the $\triangle D E F$, so that B falls on E, and $B A$ along ED:
then $B C$ will fall along $E F$, since the $\angle A B C=$ the $\angle D E F$. Hyp.
Let G and H be the points in $E D$ and $E F$, on which A and C fall; then GH represents $A C$ in its new position.

$$
\begin{array}{rrr}
\text { Then because the } \angle \mathrm{EGH}(\text { i.e. the } \angle \mathrm{BAC})=\text { the } \angle E D F, \text { Hyp. } \\
\therefore \mathrm{GH} \text { is par }{ }^{1} \text { to } \mathrm{DF}: \\
\therefore \mathrm{VG}: \mathrm{GE}:: \mathrm{FH}: \mathrm{HE} ; & \\
\therefore \text {, componendo, } 2 . \\
\therefore \text {, alternately, } \mathrm{DE}: \mathrm{GE}:: \mathrm{FE}: \mathrm{FE}, \mathrm{GE}: \mathrm{HE}, & \text { v. } 13 . \\
\text { that is, } \mathrm{DE}: \mathrm{EF}:: \mathrm{AB}: \mathrm{BC} . & \text { v. } 11 .
\end{array}
$$

Similarly by applying the $\triangle A B C$ to the $\triangle D E F$, so that the point C may fall on F, it may be proved that

$$
\begin{aligned}
& \mathrm{EF}: \mathrm{FD}:: \mathrm{BC}: \mathrm{CA} . \\
& \therefore \text { ex wquali, } \mathrm{DE}: \mathrm{DF}:: \mathrm{AB}: \mathrm{AC} .
\end{aligned}
$$

QUESTIONS FOR REVISION, AND NUMLRICAL ILIUUS'RATIONS.

1. Distinguish between the use of the word equian!ular in the following cases:
(i) the figure ABCD is equian!mular ;
(ii) the figure $A B C D$ is equiangular to the figure EFGH.
2. Define the terms ratio, antecedent, consequent. Why must the terms of a ratio be of the same kind? When are ratios said to be reciprocal?
3. When are four quantities in proportion? Quote the algebraical and geometrical tests of proportion; and deduce the latter from the former.
4. What is meant by homologous terms in a proportion? In the enunciation of Prop. 4, why is it necessary to add-those sides which are opposite to equal angles being homologous?
5. Quote the enunciation of the theorem known as alternando or alternately ; and explain why the terms of a proportion to which this theorem is applied must be all of the same kind.
6. In the Particular Enunciation of Proposition 5 it is given that
$A B: B C: D E$: $E F$, and Why do we add "and consequently,"
$A B: C A:: D E: F D$?
7. Define similar figures. In what way do the conditions of similarity in triangles differ from those in figures of more than three sides?
8. Two parallelograms whose areas are in the ratio $2 \cdot 1: 3 \cdot 5$ lie between the same parallels. If the base of the first is 6.6 inches in length, shew that the base of the second is 11 inches.
9. $A B C$ is a triangle, and $X Y$ is drawn parallel to $B C$, cutting the other sides at X and Y :
(i) If $A B=1$ foot, $A C=8$ inches, and $A X=7$ inches; shew that $A Y=4 \frac{3}{3}$ inches.
(ii) If $A B=20$ inches, $A C=15$ inches, and $A Y=9$ inches, shew that $B X=8$ inches.
(iii) If X divides $A B$ in the ratio $8: 3$, and if $A C=2 \cdot 2$ inches, shew that $A Y, Y C$ measure respectively 1.6 and 6 inches.
10. The vertical angle A of a triangle $A B C$ is bisected by a line which cuts $B C$ at X; if $B C=25$ inches in length, and if the sides $B A, A C$ are in the ratio $7: 3$, shew that the segments of the base are $17 \cdot 5$ and $7 \cdot 5$ inches respectively.

Proposition 8. Theorem.

In a right-angled triangle, if a perpendicular is drawn from the right angle to the hypotenuse, the triangles on each side of it are similar to the whole triangle and to one another.

Let $B A C$ be a triangle right-angled at A, and let $A D$ be drawn perp. to BC.

Then shall the $\triangle{ }^{\circ} B D A, A D C$ be similar to the $\triangle B A C$ and to one another.

In the $\triangle^{8} B D A, B A C$, the $\angle B D A=$ the $\angle B A C$, being rt. angles, and the angle at B is common to both;
\therefore the remaining $\angle B A D=$ the remaining $\angle B C A, I .32$. that is, the $\triangle B D A$ is equiangular to the $\triangle B A C$;
\therefore their sides about the equal angles are proportionals; vi. 4. \therefore the $\triangle^{8} B D A, B A C$ are similar.
In the same way it may be proved that the $\triangle^{\circ} A D C$, BAC are similar.

Hence the $\triangle^{8} B D A, A D C$, having their angles severally equal to those of the $\triangle B A C$, are equiangular to one another;
\therefore they are similar.
VI. 4.
Q.E.D.

Corollary. Because the \triangle BDA $A D C$ are similar,
$\therefore B D: D A: D A: D C$;
and because the $\triangle{ }^{8} C B A, A B D$ are similar,
$\therefore C B: B A:: B A: B D$;
and because the $\triangle B C A, A C D$ are similar,
$\therefore B C: C A: C A: C D$.

EXERCISES.

1. In the figure of Prop. 8 prove that the hypotenuse is to one side as the second side is to the perpendicular.
2. Shew that the raaius of a circle is a mean proportional between the segments of any tangent between its point of contact and a pair of parallel tangents.

Definition. One magnitude is said to be a submultipleof another, when the first is contained an exact number of times in the second.
[Book v. Def. 2.]

Proposition 9. Problem.

From a given straight line to cut off any required submultiple.

Let $A B$ be the given straight line.
It is required to cut off a certain submultiple from AB .
From A draw a straight line $A G$ of indefinite length, making any angle with AB.

In AG take any point D; and, by cutting off successive parts each equal to $A D$, make $A E$ to contain $A D$ as many times as $A B$ contains the required submultiple.

Join EB.

Through D draw DF par to EB, meeting AB in F.
Then shall AF be the required submultiple.
Because DF is par ${ }^{1}$ to $E B$, a side of the $\triangle A E B$,

$$
\therefore B F: F A:: E D: D A ; \quad \text { vi. } 2 .
$$

\therefore, componendo, $B A: A F:: E A: A D$.
But $A E$ contains $A D$ the required number of times; Constr.
$\therefore A B$ contains $A F$ the required number of times ;
that is, $A F$ is the required submultiple. Q.E.F.

EXERCISES.

1. Divide a straight line into five equal parts.
2. Give a geometrical construction for cutting off two-sevenths of a given straight line.

Proposition 10. Problem.

To divide a straight line similarly to a given divided straight line.

Let $A B$ be the given straight line to be divided, and $A C$ the given straight line divided at the points D and E.

It is required to divide AB similarly to AC .
Let $A B, A C$ be placed so as to form any angle. Join CB.
Through D draw DF par ${ }^{1}$ to CB,
I. 31 . and through E draw $E G$ par ${ }^{1}$ to CB.
Then AB shall be divided at F and G similarly to AC .
Through D draw DHK par ${ }^{1}$ to AB.
Now by construction each of the figs. FH, HB is a parm ;

$$
\therefore \mathrm{DH}=\mathrm{FG}, \text { and } \mathrm{HK}=\mathrm{GB} . \quad \text { I. } 34 .
$$

Now since $H E$ is par ${ }^{1}$ to $K C$, a side of the $\triangle D K C$,

$$
\therefore K H: H D:: C E: E D .
$$

VI. 2.

But $K H=B G$, and $H D=G F$;
$\therefore B G: G F:: C E: E D$.
v. 1.

Again, because FD is par ${ }^{1}$ to GE, a side of the $\triangle A G E$, \therefore GF : FA :: ED : DA ; VI. 2.
\therefore ex cequali, $\mathrm{BG}: \mathrm{FA}:: \mathrm{CE}: \mathrm{DA}:$
v. 14.
$\therefore A B$ is divided similarly to $A C$. Q.E.F.

EXERCISE.

Divide a straight line internally and externally in a given ratio. Is this always possible?

Proposition 11. Problem.

To find a third proportional to two given straight lines.

Let A, B be two given straight lines.
It is required to find a third proportional to A and B .
Take two st. lines DL, DK of indefinite length, containing any angle.

From DL cut off DG equal to A, and $G E$ equal to B; and from DK cut off DH also equal to B. I. 3. Join GH.
Through E draw EF par to GH, meeting DK in F. 1. 31.
Then shall HF be a third proportional to A and B .
Because GH is parl to EF, a side of the $\triangle D E F$;

$$
\therefore D G: G E: D H: H F .
$$

VI. 2

But DG $=\mathrm{A}$; and GE, DH each $=\mathrm{B}$; Constr.

$$
\therefore A: B:: B: H F ;
$$

that is, $H F$ is a third proportional to A and B.
Q.E.F.

EXERCISES.

1. $A B$ is a diameter of a circle, and through A any straight line is drawn to cut the circumference in C and the tangent at B in D : shew that $A C$ is a third proportional to $A D$ and $A B$.
2. $A B C$ is an isosceles triangle having each of the angles at the base double of the vertical angle BAC; the bisector of the angle BCA meets $A B$ at D. Shew that $A B, B C, B D$ are three proportionals.
3. Two circles intersect at A and B; and at A tangents are drawn, one to each circle, to meet the circumferences at C and D : shew that if $C B, B D$ are joined, $B D$ is a third proportional to $C B$, BA.

Proposition 12. Problem.

To find a fourth proportional to three given straight lines.

Let A, B, C be the three given straight lines. It is required to find a fourth proportional to A, B, C.

Take two straight lines DL, DK of indefinite length, con taining any angle.
From DL cut off DG equal to A, and GE equal to B; and from DK cut off DH equal to C.

Through E draw EF par to GH.
 I. 31 .

Then shall HF be a fourth proportional to A, B, C.
Because GH is par to EF , a side of the $\triangle \mathrm{DEF}$;

$$
\therefore \mathrm{DG}: \mathrm{GE}:: \mathrm{DH}: \mathrm{HF} .
$$

But $\mathrm{DG}=\mathrm{A}, \mathrm{GE}=\mathrm{B}$, and $\mathrm{DH}=\mathrm{C}$;
Constr.

$$
\therefore A: B: C: H F ;
$$

that is, $H F$ is a fourth proportional to A, B, C.
Q.E.F.

EXERCISES.

1. If from D, one of the angular points of a parallelogram $A B C D$, a straight line is drawn meeting $A B$ at E and $C B$ at F; shew that CF is a fourth proportional to EA, AD, and AB.
2. In a triangle $A B C$ the bisector of the vertical angle $B A C$ meets the base at D and the circumference of the circumscribed circle at E : shew that $B A, A D, E A, A C$ are four proportionals.
3. From a point P tangents $P Q, P R$ are drawn to a circle whose centre is C , and QT is drawn perpendicular to $R C$ produced : shew that QT is a fourth proportional to PR, RC, and RT.

Proposition 13. Problem.

To find a mean proporiional between two given straight lines.

Let $A B, B C$ be the two given straight lines. It is required to find a mean proportional between AB and BC .

Place $A B, B C$ in a straight line, and on $A C$ describe the emicircle ADC.

From B draw BD at rt. angles to AC. I. 11.
Then shall BD be a mean proportional between AB and BC . Join AD, DC.

Now the $\angle A D C$, being in a semicircle, is a rt. angle; III. 31. ind because in the right-angled $\triangle A D C$, $D B$ is drawn from he rt. angle perp. to the hypotenuse,

$$
\begin{aligned}
& \therefore \text { the } \triangle^{3} A B D . D B C \text { are similar ; vi. } 8 . \\
& \quad \therefore A B: B D:: B D: B C \text {; }
\end{aligned}
$$

that is, $B D$ is a mean proportional between $A B$ and $B C$.
Q.E.F.

EXERCISES.

1. If from one angle A of a parallelogram a straight line is lrawn cutting the diagonal in E and the sides in P, Q, shew that $I E$ is a mean proportional between PE and EQ.
2. A, B, C are three points in order in a straight line : find a oint P in the straight line so that $P B$ may be a mean proportional etween PA and PC.
3. The diameter $A B$ of a semicircle is divided at any point C, nd $C D$ is drawn at right angles to $A B$ meeting the circumference n D ; DO is drawn to O the centre, and CE is perpendicular to OD: hew that $D E$ is a third proportional to $A O$ and $D C$.
4. $A C$ is the diameter of a semicircle on which a point B is taken so that $B C$ is equal to the radius: shew that $A B$ is a mean proportional between $B C$ and the sum of $B C, C A$.
5. A is any point in a semicircle on $B C$ as diameter ; from D any point in $B C$ a perpendicular is drawn meeting $A B, A C$, and the circumference in E, G, F respectively ; shew that $D G$ is a third proportional to DE and DF.
6. Two circles have external contact, and a common tangent touches them at A and B : prove that $A B$ is a mean proportional between the diameters of the circles.
[See Ex. 21, p. 237.]
7. If a straight line is divided at two given points, determine a third point such that its distances from the extremities may be proportional to its distances from the given points.
8. $A B$ is a straight line divided at C and D so that $A B, A C, A D$ are in continued proportion; from A a line $A E$ is drawn in any direction and equal to $A C$; shew that $B C$ and $C D$ subtend equal angles at E .
9. In a given triangle draw a straight line parallel to one of the sides, so that it may be a mean proportional between the segments of the base.
10. On the radius $O A$ of a quadrant $O A B$, a semicircle ODA is described, and at A a tangent $A E$ is drawn; from O any line ODFE is drawn meeting the circumferences in D and F and the tangent in E : if $D G$ is drawn perpendicular to $O A$, shew that $O E, O F, O D$, and OG are in continued proportion.
11. From any point A, on the circumference of the circle $A B E$, as centre, and with any radius, a circle BDC is described cutting the former circle in B and C; from A any line $A F E$ is drawn meeting the chord $B C$ in F, and the circumferences $B D C, A B E$ in D, E respectively: shew that $A D$ is a mean proportional between $A F$ and $A E$.

Definition. Two figures are said to have their sides about one angle in each reciprocally proportional, when a side of the first figure is to a side of the second as the remaining side of the second figure is to the remaining side of the first.
[Book vi. Def. 4.]

Proposition 14. Theorem.

Parallelograms which are equal in trent, and which have ome angle of the one equal to one anyle of the other, have their sides ubout the equal angles reciprocally proportiomut.

Comrersely, parallelograms which luve one angle of the ome equal to ome angle of the other, and the sides about these angles reciprocally proportional, are equal in area.

Let the par ${ }^{\mathrm{ms}} \mathrm{AB}, \mathrm{BC}$ be of equal area, and have the \angle DBF equal to the $\angle \mathrm{GBE}$.

Then shall the sides about the \angle sBF, GBE be reciprocally proportional, namely, $\quad \mathrm{DB}: \mathrm{BE}:: \mathrm{GB}: \mathrm{BF}$.
Place the par ${ }^{\mathrm{ms}}$ so that DB, BE may be in the same straight line;
$\therefore F B, B G$ are also in one straight line.
I. 14 .

Complete the par ${ }^{m}$ FE.
Then because the par ${ }^{m \mathrm{~m}} \mathrm{AB}=$ the par ${ }^{\mathrm{m}} \mathrm{BC}$, Hyp. and $F E$ is another par ${ }^{m}$,
\therefore the par ${ }^{m} A B$: the par ${ }^{m} F E::$ the par ${ }^{m} B C$: the $\operatorname{par}^{m} F E$; but the par ${ }^{m} A B$: the par ${ }^{m} F E:: D B: B E, \quad$ VI. 1. Cor. and the par ${ }^{10} B C$: the par ${ }^{m} F E:: G B: B F$;
$\therefore \mathrm{DB}: \mathrm{BE}:: \mathrm{GB}: \mathrm{BF}$.
V. 1.

Conversely. Let the $\angle \mathrm{DBF}$ be equal to the $\angle \mathrm{GBE}$, and let $D B: B E:: G B: B F$.
Then shall the par ${ }^{m} \mathrm{AB}$ be equal in area to the parm BC .
For, with the same construction as before, by hypothesis, $\quad \mathrm{DB}: \mathrm{BE}:: \mathrm{GB}: \mathrm{BF}$;
but $D B$: $B E::$ the par ${ }^{m} A B$: the par ${ }^{m} F E$, Vi. 1. and $G B$: $B F::$ the par ${ }^{m} B C$: the par ${ }^{m} F E$,
\therefore the par ${ }^{\text {¹4 }} A B$: the par ${ }^{\text {mu }} F E:$ the par ${ }^{m \mathrm{~m}} B C$: the par ${ }^{m} F E ; V .1$.
\therefore the par ${ }^{m B}=$ the par ${ }^{m} B C$.
Q.E.D.

Proposition 15. Theorem.

Triangles which are equal in area, and which have one angle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportionul.

Conversely, triangles which have one angle of the one equal to one angle of the other, and the sides about these angles reciprocally proportional, are equal in area.

Let the $\triangle^{8} C A B, E A D$ be of equal area, and have the $\angle C A B$ equal to the $\angle E A D$.

Then shall the sides about the $\angle{ }^{8} \mathrm{CAB}, \mathrm{EAD}$ be reciprocally proportional,
namely,
$C A: A D:: E A: A B$.
Place the \triangle^{8} so that $C A$ and $A D$ may be in the same st. line; $\therefore B A, A E$ are also in one st. line. $\quad 14$. Join BD.
Then because the $\triangle C A B=$ the $\triangle E A D, \quad H y p$.
and $A B D$ is another triangle,
\therefore the $\triangle C A B$: the $\triangle A B D::$ the $\triangle E A D:$ the $\triangle A B D ;$
but the $\triangle C A B:$ the $\triangle A B D:: C A: A D, \quad$ VI. 1.
and the $\triangle E A D:$ the $\triangle A B D:: E A: A B ;$

$$
\therefore C A: A D:: E A: A B .
$$

Conversely. Let the $\angle C A B$ be equal to the $\angle E A D$, and let $C A: A D:: E A: A B$.

$$
\text { Then shall the } \triangle \mathrm{CAB}=\text { the } \triangle \mathrm{EAD} \text {. }
$$

For, with the same construction as before,
by hypothesis,
$C A: A D:: E A: A B$;
but $C A: A D::$ the $\triangle C A B:$ the $\triangle A B D$, vI. 1. and $E A: A B::$ the $\triangle E A D$: the $\triangle A B D$;
\therefore the $\triangle C A B:$ the $\triangle A B D::$ the $\triangle E A D:$ the $\triangle A B D ; v .1$. \therefore the $\triangle C A B=$ the $\triangle E A D$.
Q.E.D.

EXERCISES.

on Propositions 14 and 15.

1. Parallelograms which are equal in area and which have their sides reciprocally proportional, have their angles respectively equal.
2. Triangles which are equal in area, and which have the sides ahout a pair of angles reciprocally proportional, have those angles equal or supplementary.
3. AC, BD are the diagonals of a trapezium which intersect in O; if the side $A B$ is parallel to $C D$, use Prop. 15 to prove that the triangle $A O D$ is equal to the triangle $B O C$.
4. From the extremities A, B of the hypotenuse of a rightangled triangle $A B C$ lines $A E, B D$ are drawn perpendicular to $A B$, and meeting $B C$ and $A C$ produced in E and D respectively : employ Prop. 15 to shew that the triangles $A B C, E C D$ are equal in area.
5. On $A B, A C$, two sides of any triangle, squares are described externally to the triangle. If the squares are $A B D E, A C F G$, shew that the triangles DAG, FAE are equal in area.
6. $A B C D$ is a parallelogram ; from A and C any two parallel straight lines are drawn meeting $D C$ and $A B$ in E and F respectively; $E G$, which is parallel to the diagonal $A C$, meets $A D$ in G : shew that the triangles DAF, GAB are equal in area.
7. Describe an isosceles triangle equal in area to a given triangle and having its vertical angle equal to one of the angles of the given triangle.
8. Prove that the equilateral triangle described on the hypotenuse of a right-angled triangle is equal to the sum of the equilateral triangles described on the sides containing the right angle.
[Let $A B C$ be the triangle right-angled at C; and let $B X C, C Y A$, $A Z B$ be the equilateral triangles. Draw CD perpendicular to $A B$; and join $D Z$. Then shew by Prop. 15 that the $\triangle A Y C=$ the $\triangle D A Z$; and similarly that the $\triangle B X C=$ the $\triangle B D Z$.]

Proposition 16. Theorem.

If four straight lines are proportional, the rectangle contained by the extremes is equal to the rectangle contained by the means.

Conversely, if the rectangle contained by the extremes is equal to the rectangle contained by the means, the four straight lines are proportional.

Let the st. lines $A B, C D, E F, G H$ be proportional, so that $A B: C D:: E F: G H$.
Then shall the rect. $\mathrm{AB}, \mathrm{GH}=$ the rect. CD, EF.
From A draw $A K$ perp. to $A B$, and equal to GH. I. 11, 3. From C draw CL pere. to CD, and equal to EF. Complete the $\mathrm{par}^{\mathrm{ms}} \mathrm{KB}, \mathrm{LD}$.

Then because AB : CD :: EF : GH ;
Hyp.
and $E F=C L$, and $G H=A K$;
Constr.
$\therefore A B: C D:: C L: A K$;
that is, the par ${ }^{m s} K B$, LD have their sides about the equal angles at A and C reciprocally proportional ;

$$
\therefore K B=L D .
$$

VI. 14.

But $K B$ is the rect. $A B, G H$, for $A K=G H$,
Constr. and $L D$ is the rect. $C D, E F$, for $C L=E F$;
\therefore the rect. $A B, G H=$ the rect. $C D, E F$.

Conversely. Let the rect. $\mathrm{AB}, \mathrm{GH}=$ the rect. CD, EF. Then shall $\mathrm{AB}: \mathrm{CD}:: \mathrm{EF}: \mathrm{GH}$.
For, with the same construction as before, because the rect. $\mathrm{AB}, \mathrm{GH}=$ the rect. CD, EF; Hyp. and the rect. $\mathrm{AB}, \mathrm{GH}=\mathrm{KB}$, for $\mathrm{GH}=\mathrm{AK}$, Constr. and the rect. $\mathrm{CD}, \mathrm{EF}=\mathrm{LD}$, for $\mathrm{EF}=\mathrm{CL}$;

$$
K B=L D ;
$$

that is, the par ${ }^{1 \text { ms }} \mathrm{KB}$, LD, which have the angle at A equal to the angle at C , are equal in area ;
\therefore the sides about the equal angles are reciprocally proportional ;

> that is, $A B: C D:: C L: A K ;$
> $\quad \therefore A B: C D: E F: G H$.
Q.E.D.

QUESTIONS FOR REVISION.

1. State and prove the algebraical theorem corresponding to Proposition 16.
2. Define the terms : multiple, submultiple, fourth proportional, third proportional, mean proportional.
3. $A B C$ is a triangle right-angled at A, and $A D$ is drawn perpendicular to $B C$: if $A B, A C$ measure respectively 12 and 5 inches, shew that the segments of the hypotenuse are $11 \frac{1}{1 \frac{1}{3}}$ and $1 \frac{1}{1} \frac{2}{3}$ inches.
4. Find in inches the length of the mean proportional between 1 inch and 3 inches. Hence give a geometrical construction for drawing a line $\sqrt{3}$ inches in length: and extend the method to finding a line \sqrt{n} inches long.
5. A straight line $A B, 21$ inches in length, is divided at F and G into parts of $5,7,9$ inches respectively. If a second line AC, 35 inches long, is similarly divided by the method of Proposition 10, shew that the lengths of the parts are $8 \frac{1}{3}, 11 \frac{2}{3}$ and 15 inches respectively.
6. When are figures said to have their sides about one angle in each reciprocally proportional? Two equal parallelograms ABCD, $E F G H$ have their angles at B and F equal : if $A B=2$ inches, $B C=10$ inches, and $E F=5$ inches; find the length of $F G$.

Proposition 17. Theorem.

If three straight lines are proportional the rectangle contained by the extremes is equal to the square on the mean.

Conversely, if the rectangle contained by the extremes is equal to the square on the mean, the three straight lines are proportional.

Let the three st. lines A, B, C be proportional, so that

$$
\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C} .
$$

Then shall the rect. A, C be equal to the $s q$. on B . Take D equal to B.
Then because $\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}$, and $\mathrm{D}=\mathrm{B}$; $\therefore \mathrm{A}: \mathrm{B}:: \mathrm{D}: \mathrm{C}$;
\therefore the rect. $A, C=$ the rect. $B, D ; \quad$ vi. 16 . but the rect. $\mathrm{B}, \mathrm{D}=$ the sq . on B , for $\mathrm{D}=\mathrm{B}$;
\therefore the rect. $A, C=$ the sq. on B.
Conversely. Let the rect. $\mathrm{A}, \mathrm{C}=$ the sq. on B .
Then shall A : B :: B : C.
For, with the same construction as before,
because the rect. $\mathrm{A}, \mathrm{C}=$ the sq. on B ,
Hyp.
and the sq. on $\mathrm{B}=$ the rect. B, D, for $\mathrm{D}=\mathrm{B}$;
\therefore the rect. $\mathrm{A}, \mathrm{C}=$ the rect. B, D;

$$
\begin{array}{r}
\therefore A: B:: D: C, \\
\text { that is, } A: B:: B: C .
\end{array}
$$

vi. 16.
Q.E.D.

QUESTIONS FOR REVISION.

1. State and prove the algebraical theorem corresponding to Proposition 17.
2. Two adjacent sides of a rectangle measure $12 \cdot 1$ and 9 inches in length; shew that the side of an equal square is $3 \cdot 3$ inches.
3. $A B C$ is an isosceles triangle, the equal sides each measuring 12 inches. DAE is a triangle of equal area, having the angle DAE equal to the angle $C A B$. If $A D=36$ inches, find the length of $A E$.

EXERCISES.

on Propositions 16 and 17.

1. Apply Proposition 16 to prove that if two chords of a circle intersect, the rectangle contained by the segments of the one is equal to the rectangle contained by the segments of the other.
2. Prove that the rectangle contained by the sides of a rightangled triangle is equal to the rectangle contained by the hypotenuse and the perpendicular drawn to it from the right angle.
3. On a given straight line construct a rectangle equal to a given rectangle.
4. $A B C D$ is a parallelogram; from B any straight line is drawn cutting the diagonal $A C$ at F, the side $D C$ at G, and the side $A D$ produced at E : shew that the rectangle $E F, F G$ is equal to the square on $B F$.
5. On a given straight line as base describe an isosceles triangle equal to a given triangle.
6. $A B$ is a diameter of a circle, and any line $A C D$ cuts the circle in C and the tangent at B in D; shew by Prop. 17 that the rectangle $A C, A D$ is constant.
7. The exterior angle at A of a triangle $A B C$ is bisected by a straight line which meets the base in D and the circumscriber circle in E : shew that the rectangle $B A, A C$ is equal to the rectangle $E A, A D$.
8. If two chords $A B, A C$ drawn from any point A in the circumference of the circle $A B C$ are produced to meet the tangent at the other extremity of the diameter through A in D and E, shew that the triangle $A E D$ is similar to the triangle $A B C$.
9. At the extremities of a diameter of a circle tangents are drawn ; these meet the tangent at a point P in Q and R : shew that the rectangle QP, PR is constant for all positions of P.
10. A is the vertex of an isosceles triangle $A B C$ inscribed in a circle, and $A D E$ is a straight line which cuts the base in D and the circle in E; shew that the rectangle $E A, A D$ is equal to the square on $A B$.
11. Two circles touch one another externally at A; a straight line touches the circles at B and C, and is produced to meet the straight line joining the centres at S : shew that the rectangle SB, SC is equal to the square on SA .
12. Divide a triangle into two equal parts by a straight line drawn at right angles to one of the sides.

Definition. Two similar rectilineal figures are said to be similarly situated with respect to two of their sides when these sides are homologous.
[Book vi. Def. 3.]

Proposition 18. Problem.

On a given straight line to describe a rectilineal figure similar and similarly situated to a given rectilineal figure.

Let $A B$ be the given st. line, and CDEF the given rectilineal figure.

It is required to describe on the st. line AB a rectilineal figure similar and similarly situated to CDEF.

First suppose CDEF to be a quadrilateral. Join DF.
At A in $B A$ make the $\angle B A G$ equal to the $\angle D C F, \quad$ I. 23. and at B in $A B$ make the $\angle A B G$ equal to the $\angle C D F$;
\therefore the remaining $\angle A G B=$ the remaining $\angle C F D ;$ I. 32. and the $\triangle A G B$ is equiangular to the $\triangle C F D$.
Again at B in $G B$ make the $\angle G B H$ equal to the $\angle F D E$, and at G in $B G$ make the $\angle B G H$ equal to the $\angle D F E ;$ I. 23.
\therefore the remaining $\angle \mathrm{BHG}=$ the remaining $\angle \mathrm{DEF} ; \mathrm{I} .32$. and the $\triangle B H G$ is equiangular to the $\triangle D E F$.

Then shall ABHG be the required figure.
(i) To prove that the fig. $A B H G$ is equiangular to the fig. CDEF.

$$
\begin{aligned}
\text { Because the } \angle A G B & =\text { the } \angle C F D, \\
\text { and the } \angle B G H & =\text { the } \angle D F E ; \\
\text { the whole } \angle A G H & =\text { the whole } \angle C F E . \\
\text { Similarly the } \angle A B H & =\text { the } \angle C D E ;
\end{aligned}
$$

and the angles at A and H are respectively equal to the angles at C and E;

Constr. and proof.
\therefore the fig. $A B H G$ is equiangular to the fig. CDEF.

(ii) To prove that the figs. $\mathrm{ABHG}, \mathrm{CDEF}$ have the sides about their equal angles proportional.

Because the $\triangle A G B$ is equiangular to the $\triangle C F D$,

$$
\therefore A G: G B: C F: F D .
$$

VI. 4.

And because the $\triangle B G H$ is equiangular to the $\triangle D F E$, $\therefore \mathrm{BG}: \mathrm{GH}:: \mathrm{DF}: \mathrm{FE}$;
\therefore ex cquali, $\mathrm{AG}: \mathrm{GH}:: \mathrm{CF}: \mathrm{FE} . \quad \mathrm{V} .14$.
Similarly it may be shewn that
$A B: B H:: C D: D E$.
Also $B A: A G$:: $D C: C F$,
vi. 4.

$$
\text { and } G H: H B \text { :: FE : ED. }
$$

\therefore the figs. $A B H G, C D E F$ are equiangular and have their sides about the equal angles proportional ;
that is, ABHG is similar to CDEF. vi. Def 2.
In like manner the process of construction may be extended to a figure of five or more sides.
Q.E.F.

Definition. When three magnitudes are proportionals the first is said to have to the third the duplicate ratio of that which it has to the second.
[Book v. Def. 13.]

Proposition 19. Theorem.

Similar triangles are to one another in the duplicute ratio of their homologous sides.

Let ABC, DEF be similar triangles, having the $\angle A B C$ equal to the $\angle D E F$, and let $B C$ and $E F$ be homologous sides. Then shall the $\triangle \mathrm{ABC}$ be to the $\triangle \mathrm{DEF}$ in the duplicate ratio of BC to EF .

> To BC and EF take a third proportional BG , so that $\mathrm{BC}: \mathrm{EF}:: \mathrm{EF}$: BG . 11. Join AG .

Then because the $\triangle^{8} A B C$, DEF are similar, Hyp. $\therefore A B: B C:: D E: E F$;
\therefore, alternately, $\mathrm{AB}: \mathrm{DE}:: \mathrm{BC}: \mathrm{EF}$; V. 11 .
but $\mathrm{BC}: \mathrm{EF}:: \mathrm{EF}: \mathrm{BG} ; \quad$ Constr.
$\therefore A B: D E: E F: B G$; v. 1 .
that is, the sides of the $\triangle^{8} A B G$, DEF about the equal
angles at B and E are reciprocally proportional ;
\therefore the $\triangle A B G=$ the $\triangle D E F$.
VI. 15.

Again, because BC : EF :: EF : BG,
Constr.
$\therefore B C: B G$ in the duplicate ratio of $B C$ to EF. v. Def. 13 .
But the $\triangle A B C$: the $\triangle A B G:: B C: B G$;
vi. 1.
\therefore the $\triangle A B C$: the $\triangle A B G$ in the duplicate ratio of $B C$ to $E F$:
and the $\triangle A B G=$ the $\triangle D E F ; \quad$ Proved.
\therefore the $\triangle A B C$: the $\triangle D E F$ in the duplicate ratio of $B C: E F$.
Q.E.D.

QUESTIONS FOR REVISION, AND NUMERICAL HLLUSTRATIONS.

1. Quote the Geometrical and Algehraical definitions of the duplicate of the ratio $a: b$; and deduce the latter from the former. Estimate numerically the duplicate of the ratio $36: 21$.
2. The smaller of two similar triangles has an area of 20 square fect, and two corresponding sides are 3 ft .6 in . and 2 ft .4 in . respectively : shew that the area of the greater triangle is 45 square feet.
3. $X Y$ is drawn parallel to $B C$, the base of a triangle $A B C$, to meet the other sides at X and Y : if $A X$ and $X B$ measure respectively 3 inches and 7 inches, shew that the areas of the triangles $A X Y, A B C$ are in the ratio $9: 100$.
4. Two similar triangles have areas in the ratio $529: 361$; shew that any pair of homologous sides are to one another as $23: 19$.
5. When are similar figures said to be similarly situated? Shew that similar and similarly situated triangles are to one another in the duplicate ratio of their altitudes.
6. Two similar and similarly situated triangles have areas in the ratio $1369: 1681$; if the altitude of the greater is 10 ft .3 in ., shew that the altitude of the other is 1 foot less.
7. The sides of a triangle are $11,23,29$; find the sides of a similar triangle whose area is 289 times that of the former.
8. Shew how to draw a straight line $X Y$ parallel to $B C$ the base of a triangle $A B C$, so that the area of the triangle $A X Y$ may be ninesixteenths of that of the triangle ABC.
9. $X Y$ is drawn parallel to the base $B C$ of a triangle $A B C$, so that the triangle $A X Y$ has to the figure $X B C Y$ the ratio $4: 5$; shew that $A B$ and $A C$ are cut by $X Y$ in the ratio $2: 1$.
10. A triangle $A B C$ is bisected by a straight line $X Y$ drawn parallel to the base $B C$. In what ratio is $A B$ divided at X ?

Hence shew how to bisect a triangle by a straight line drawn parallel to the base.
11. $A B C$ is a triangle whose area is 16 square feet; and $X Y$ is drawn parallel to $B C$, dividing $A B$ in the ratio $3: 5$; shew that if $B Y$ is joined, the area of the triangle $B X Y$ is $3 \mathrm{sq} . \mathrm{ft} .108 \mathrm{sq}$. in.
12. $A B C$ is a triangle right-angled at A, and $A D$ is the perpendicular drawn from A to the hypotenuse : if the area of the triangle $A B C$ is 54 square inches and $A B$ is 1 foot, shew that the area of the triangle $A D C$ is 19.44 square inches.

Proposition 20. Theorem.

Similar polygons may be divided into the same number of similar triangles, having the same ratio each to each that the polygons have; and the polygons are to one another in the duplicate ratio of their homologous sides.

Let $A B C D E$, $F G H K L$ be similar polygons, and let $A B$ and FG be homologous sides.
Then (i) the polygons may be divided into the same number of similar triangles ;
(ii) these triangles shall have each to each the same ratio that the polygons have;
(iii) the polygon ABCDE shall be to the polygon FGHKL in the duplicate ratio of AB to FG .
Join EB, EC, LG, LH.
(i) Then because the polygon $A B C D E$ is similar to the polygon FGHKL,

$$
\begin{aligned}
& \therefore \text { the } \angle E A B=\text { the } \angle L F G \text {, } \\
& \text { and } E A: A B:: L F: F G ;
\end{aligned}
$$

\therefore the $\triangle E A B$ is similar to the $\triangle L F G$; vi. 6 . \therefore the $\angle A B E=$ the $\angle F G L$.
But because the polygons are similar, Hyp.

$$
\therefore \text { the } \angle A B C=\text { the }- \text { FGH ; } \quad \text { vi. Def. } 2 \text {. }
$$

\therefore the remaining $\angle E B C=$ the remaining $-L G H$.
And because the $\triangle^{8} E A B$, LFG are similar, Proved. \therefore EB : BA :: LG:GF;
and because the polygons are similar, Hyp.

$$
\therefore A B: B C:: F G: G H ; \quad \text { vi. Def. } 2 .
$$

\therefore, ex cquali, EB: BC :: LG : GH; V. 14 .
that is, the sides about the equal $\angle^{3} \mathrm{EBC}, \mathrm{LGH}$ are proportionals ;
\therefore the $\triangle E B C$ is similar to the $\triangle L G H$.
vi. 6.

In the same way it may be proved that the $\triangle E C D$ is similar to the $\triangle L H K$.
\therefore the polygons have been divided into the same number of similar triangles.
(ii) Again, because the $\triangle E A B$ is similar to the $\triangle L F G$, the $\triangle E A B$ is to the $\triangle L F G$ in the duplicate ratio of $E B: L G$;
vi. 19. and, in like manner,
the $\triangle E B C$ is to the $\triangle L G H$ in the duplicate ratio of $E B$ to LG;
\therefore the $\triangle E A B$: the $\triangle L F G:$ the $\triangle E B C$: the $\triangle L G H . v .1$.
In like manner it can be shewn that
the $\triangle E B C$: the $\triangle L G H$:: the $\triangle E C D$: the $\triangle L H K$;
\therefore the $\triangle E A B$: the $\triangle L F G$:: the $\triangle E B C$: the $\triangle L G H$:: the $\triangle E C D$: the $\triangle L H K$.
But in a series of equal ratios, as each antecedent is to its consequent so is the sum of the antecedents to the sum of the consequents ; [Addendo. v. 12.] \therefore the $\triangle E A B$: the $\triangle L F G$:: the fig. ABCDE : the fig. FGHKL.
(iii) Now the $\triangle E A B$: the $\triangle L F G$ in the duplicate ratio of $A B: F G$,
vi. 19. and the $\triangle E A B$: the $\triangle L F G$:: the fig. $A B C D E$: the fig. FGHKL; \therefore the fig. ABCDE : the fig. FGHKL in the duplicate ratio of $A B: F G$.
Q.E.D.

Corollary 1. Let a third proportional \times be taken to $A B$ and $F G$,
then $A B$ is to X in the duplicate ratio of $A B: F G$; but the fig. ABCDE : the fig. FGHKL in the duplicate ratio of $A B: F G$;

Proved.
$\therefore A B: X::$ the fig. $A B C D E$: the fig. FGHKL.
Hence, if three straight lines are proportionals, as the first is to the third, so is any rectilineal figure described on the first to a similar and similarly described rectilineal figure on the second.

Corollary 2. It follows that similar rectilineal figures are to one another as the squares on their homologous sides. For squares are similar figures and therefore are to one another in the duplicate ratio of their sides.

Obs. The following theorem, taken from Euclid's Twelfth Book, is given here as an important application of the preceding proposition.

Book XII. Proposition 1.

The areas of similar polygons inscribed in circles are to one another as the squares on the diameters.

Let ABCDE and FGHKL be two similar polygons, inscribed in the circles $A C E, F H L$, of which $A M, F N$ are diameters.

T'hen shall
the fig. ABCDE : the fig. FGHKL : : the sq. on AM : the sq. on FN . Join BM, AC and GN, FH.
Then since the polygon $A B C D E$ is similar to the polygon F GHKL, \therefore the $\angle A B C=$ the $\angle F G H$,
and $A B: B C:: F G: G H$;
vi. Def. 2.
vi. 6.
\therefore the $\triangle A B C$ is similar to the $\triangle F G H$;
\therefore the $\angle A C B=$ the $\angle F H G$.
But the $\angle A C B=$ the $\angle A M B$;
III. 21. and the $\angle F H G=$ the $\angle F N G$;
\therefore the $\angle A M B=$ the $\angle F N G$.
Also in the $\triangle^{s} A B M, F G N$, the $\angle^{s} A B M, F G N$ are equal, being rt. angles;
hence the remaining $L^{8} B A M, G F N$ are equal;
III. 31.
and the $\triangle{ }^{s} A B M, F G N$ are similar:
I. 32.

$$
\therefore A B: F G:: A M: F N .
$$

But the fig. ABCDE : the fig. FGHKL in the duplicate ratio of $A B: F G$, that is, in the duplicate ratio of $A M$: $F N$.
vi. 20.
v. 16.

Hence

the fig. $A B C D E$: the fig. $F G H K L$: : the sq. on $A M$: the sq. on $F N$. vi. 20, Cor. 2.

Obs. The following theorem, which forms Proposition 3 of Euclid's Twelfth Book, may be derived as a corollary from the preceding proof.

Corollary. The areas of circles are to one another as the squares on their diameters.

It has been shewn that
the fig. $A B C D E$: the fig. FGHKL : : the sq. on $A M$: the sq. on $F N$: and this is true however many sides the two polygons may have.

Suppose the polygons are regular; then by sufficiently increasing the number of their sides, we may make their areas differ from the areas of their circumseribed circles by quantities smaller than any that can be named; hence ultimately,
the $\odot A C E$: the $\odot F H L::$ the sq. on $A M$: the sq. on $F N$.

EXERCISES ON PROPOSITIONS $19,20$.

1. If $A B C$ is a triangle right-angled at A, and $A D$ is drawn perpendicular to $B C$, shew that
(i) $\mathrm{CB}: \mathrm{BD}$ in the duplicate ratio of CB to BA ;
(ii) The square on $C B$: the square on $B A:: C B: B D$;
(iii) The $\triangle A B D$: the $\triangle C A D$ in the duplicate ratio of $B A$ to AC .
2. In any triangle $A B C$, the sides $A B, A C$ are cut by a line $X Y$ drawn parallel to $B C$. If $A X$ is one-third of $A B$, what part is the triangle $A X Y$ of the triangle $A B C$?
3. A trapezium $A B C D$ has its sides $A B, C D$ parallel, and its diagonals intersect at O. If $A B$ is double of $C D$, find the ratio of the triangle $A O B$ to the triangle COD.
4. $A B C$ and $X Y Z$ are two similar triangles whose areas are respectively 245 and 5 square inches. If $A B$ is 21 inches in length, find $X Y$.
5. Shew how to draw a straight line $X Y$ parallel to the base $B C$ of a triangle $A B C$, so that the area of the triangle $A X Y$ may be four-ninths of the triangle $A B C$.
6. Two circles intersect at A and B, and at A tangents are drawn, one to each circle, meeting the circumferences at C and D. If $A B, C B$ and $B D$ are joined, shew that

$$
\text { the } \triangle C B A \text { : the } \triangle A B D:: C B: B D \text {. }
$$

Proposition 21. Theorem.

Rectilineal figures which are similar to the same rectilineal figure, are also similar to each other.

Let each of the rectilineal figures A and B be similar to C. Then shall \mathbf{A} be similar to \mathbf{B}.

For because A is similar to C, Hyp. $\therefore \mathrm{A}$ is equiangular to C , and the sides about their equal angles are proportionals. vi. Def. 2.

> Again, because B is similar to $\mathrm{C}, \quad H y p$. $\therefore \mathrm{B}$ is equiangular to C, and the sides about their equal angles are proportionals. vi. Def. 2.
$\therefore A$ and B are each of them equiangular to C, and have their sides about the equal angles proportional to the corresponding sides of C ;
$\therefore A$ is equiangular to B,
$A x .1$. and the sides of \mathbf{A} and B about their equal angles are proportionals ;
v. 1.
$\therefore A$ is similar to B.
Q.E.D.

Proposition 22. Theorem.

If four straight lines be proportional and a pair of similar rectilineal figures be similarly described on the first and second, and also a pair on the third and fourth; these figures shall be propertiomul.

Conversely, if a rectitineal figure on the first of four straight lines be to the similar and similarly described figure on the second as a rectilineal figure on the third is to the similar and similarly described figure on the fourth, the four straight lines shall be proportional.

First. Let $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}, \mathrm{GH}$ be proportionals, so that $A B: C D:: E F: G H$;
and let similar figures KAB, LCD be similarly described on $4 B, C D$, and also let similar figures MF, NH be similarly lescribed on EF, GH.
Then shall
the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH.
To $A B$ and CD take a third proportional X ; vi. 11. and to EF and GH take a third proportional O;
then $A B: C D:: C D: X$,
Constr. and EF : $\mathrm{GH}:: \mathrm{GH}$: O . But AB:CD :: EF: GH; Hyp.
$\therefore \mathrm{CD}: \mathrm{X}:: \mathrm{GH}: \mathrm{O}$, v. 1 .
\therefore ex cequali, $\mathrm{AB}: \mathrm{X}:: \mathrm{EF}: \mathrm{O}$.
v. 14.

But $A B$: X :: the fig. KAB : the fig. LCD ; vi. 20 , Cor. and $E F$: O :: the fig. MF : the fig. NH ; the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH. v. 1. IT.S.E.

Conversely.
Let the fig. $K A B$: the fig. LCD :: the fig. MF : the fig. NH. Then shall $\mathrm{AB}: \mathrm{CD}:: \mathrm{EF}: \mathrm{GH}$.
To $A B, C D$, and $E F$ take a fourth proportional PR: vi. 12. and on $P R$ describe the fig. $S R$ similar and similarly situated to either of the figs. MF, NH.

Then because $A B: C D:: E F: P R$,
vi. 18.

Constr. \therefore, by the former part of the proposition, the fig. $K A B$: the fig. LCD :: the fig. MF : the fig. SR. But, by hypothesis, the fig. $K A B$: the fig. $L C D$:: the fig. MF : the fig. $N H$; \therefore the fig. MF : the fig. SR :: the fig. MF : the fig. NH, v. 1. \therefore the fig. $\mathrm{SR}=$ the fig. NH .
And since the figs. SR and NH are similar and similarly situated,

Constr.

$$
\begin{aligned}
\therefore P R & =G H^{*} \\
\text { Now } A B: C D & : E F F: P R ; \\
\therefore A B: C D & : E F: G H .
\end{aligned}
$$

Constr.
Q.E.D.

[^3]Definition. When there are any number of magnitudes of the same kind, the first is said to have to the last the ratio compounded of the ratios of the first to the second, of the second to the third, and so on up to the ratio of the last but one to the last magnitude.
[Book v. Def. 11.]

Proposition 23. Theorem.

Parallelorrams which are equiungular to one another have to me another the ratio which is compounded of the ratios of their siles.

Let the par ${ }^{\mathrm{m}} \mathrm{AC}$ be equiangular to the $\mathrm{par}^{\mathrm{m}} \mathrm{CF}$, having the $B C D$ equal to the $\angle E C G$.
Then shall the par ${ }^{m C}$ have to the par ${ }^{3 n} \mathrm{CF}$ the ratio compounded of the ratios $\mathrm{BC}: \mathrm{CG}$ and $\mathrm{DC}: \mathrm{CE}$.
Let the par ${ }^{\mathrm{ms}}$ be placed so that BC and CG are in a st. line; then DC and CE are also in a st. line.
I. 14. Complete the par ${ }^{m}$ DG. Take any st. line K, and to BC, CG, and K find a fourth proportional L; Vi. 12.
and to DC, CE, and L take a fourth proportional M ;

$$
\begin{aligned}
\text { then } B C: C G:: K: L \\
\text { and } D C: C E:: L: M
\end{aligned}
$$

But $K: M$ is the ratio compounded of the ratios

$$
\mathrm{K}: \mathrm{L} \text { and } \mathrm{L}: \mathrm{M} \text {; }
$$

v. Def. 11.
hat is, $K: M$ is the ratio compounded of the ratios
$B C: C G$ and $D C: C E$.
Now the par ${ }^{m} A C$: the par ${ }^{\text {m }} D G$:: $B C: C G$ vi. 1. :: K:L, Constr.
and the par ${ }^{m}$ DG : the par ${ }^{m}$ CF :: DC : CE VI. 1. :: L:M ; Constr.
\therefore ex cequali, the par ${ }^{\mathrm{m}} \mathrm{AC}$: the par ${ }^{\text {m }} \mathrm{CF}:: \mathrm{K}: \mathrm{M}$. V. 14.
But $K: M$ is the ratio compounded of the ratios of the sides; \cdot the par ${ }^{\text {m }} A C$ has to the par ${ }^{\text {mi }} \mathrm{CF}$ the ratio compounded of the ratios of the sides.
Q.E.D.

Exercise. The areas of two triangles or parallelograms are to ne another in the ratio compounded of the ratios of their bases and of their altitudes.

Proposition 24. Theorem.

Parallelograms about a diagonal of any parallelogram are similar to the whole parallelogram and to one another.

Let $A B C D$ be a par ${ }^{m}$ of which $A C$ is a diagonal ; and let EG, HK be par ${ }^{\text {ms }}$ about AC.
Then shall the par ${ }^{m s}$ EG, HK be similar to the par ${ }^{m} \mathrm{ABCD}$, and to one another.

For because DC is par ${ }^{1}$ to GF, \therefore the $\angle A D C=$ the $\angle A G F$;

I 29 . and because $B C$ is par to $E F$, \therefore the $\angle A B C=$ the $\angle A E F$;
and each of the $\angle{ }^{8} B C D, E F G$ is equal to the opp. $\angle B A D$, \therefore the $\angle B C D=$ the $\angle E F G$;
I. 34 .
\therefore the par ${ }^{m} A B C D$ is equiangular to the par ${ }^{m}$ AEFG.
Again in the $\triangle{ }^{\circ} B A C, E A F$,
because the $\angle A B C=$ the $\angle A E F$,
I. 29 .
and the $\angle B A C$ is common;
\therefore the remaining $\angle B C A=$ the remaining $-E F A ; I .32$.
\therefore the $\triangle^{8} B A C, E A F$ are equiangular to one another ;

$$
\therefore A B: B C:: A E: E F .
$$

VI. 4.

But $B C=A D$, and $E F=A G$;
I. 34 .

$$
\therefore A B: A D:: A E: A G .
$$

Similarly DC : CB : : GF : FE,
and $C D: D A:: F G: G A$;
\therefore the sides of the par ${ }^{m 8} A B C D, A E F G$ about their equal angles are proportional;
\therefore the par ${ }^{m}$ ABCD is similar to the par ${ }^{m}$ AEFG. VI. Def. 2.
In the same way the $p a r^{m} A B C D$ may be proved similar to the par ${ }^{\text {m }}$ FHCK,
\therefore each of the par ${ }^{\mathrm{ms}}$ EG, HK is similar to the whole $\mathrm{par}^{\mathrm{m}}$;
\therefore the par ${ }^{m}$ EG is similar to the par HK. VI. 21. Q.E.D.

Proposition 25. Problem.

To describe a rectilineal figure which shall be equal to one and similar to another rectilineil figure.

Let E and S be the two given rectilineal figures.
It is required to describe a figure equal to the fig. \mathbf{E} and similar to the fig. S.

On $A B$ a side of the fig. S describe a par ${ }^{m} A B C D$ equal to S; and on $B C$ describe a par ${ }^{m}$ CBGF equal to the fig. E, and aving the -CBG equal to the -DAB ;
I. 45.
then $A B$ and $B G$ are in one st. line, and also $D C$ and $C F$ in one st. line.
Between $A B$ and $B G$ find a mean proportional HK ; vi. 13. and on HK describe the fig. P, similar and similarly situated o the fig. S .
vi. 18.

Then P shall be the figure required.
Because AB : HK :: HK : BG,
Constr.
$\therefore A B: B G::$ the fig. S : the fig. P. vi. 20 , Cor.
But $A B$: $B G$:: the par ${ }^{\text {m }} A C$: the par ${ }^{m} B F$; vi. 1. the fig. S : the fig. P :: the par ${ }^{\text {m }} A C$: the par ${ }^{m} B F$; v. 1. and the fig. $S=$ the par $^{\text {m }} A C$;

Constr.

$$
\begin{aligned}
\therefore \text { the fig. } P & =\text { the par }{ }^{m} B F \\
& =\text { the fig. } E .
\end{aligned}
$$

Constr.
And since, by construction, the fig. P is similar to the fig. S ,
$\therefore \mathrm{P}$ is the figure required.
Q.E.F.

Proposition 26. Theorem.
If two similar parallelograms have a common angle, and are similarly situated, they are about the same diagonal.

Let the par ${ }^{\text {ms }}$ ABCD, AEFG be similar and similarly situated, and have the common angle BAD.
Then shall the par ${ }^{m s}$ ABCD, AEFG be about the same diagonal.

Join AC.

Then if AC does not pass through F, if possible let it cut FG, or FG produced, at H.

Through H draw $H K$ par to $A D$ or $B C$. I. 31.
Then the par $^{\text {ms }} B D$ and $K G$ are similar, since they are about the same diagonal AHC;
vi. 24.
$\therefore \mathrm{DA}: \mathrm{AB}:: \mathrm{GA}: \mathrm{AK}$.
But because the par ${ }^{\mathrm{ms}} \mathrm{BD}$ and EG are similar; Hyp.
$\therefore D A: A B:: G A: A E ; \quad$ vi. Def. 2.
\therefore GA : AK :: GA : AE ;
$\therefore A K=A E$, which is impossible ;
\therefore AC must pass through F;
that is, the par ${ }^{m s} B D, E G$ are about the same diagonal.
Q.F.D.

Obs. Propositions $27,28,29$ being cumbrons in form and of little value as geometrical results are now very generally omitted.

Definition. A straight line is said to be divided in extreme and mean ratio, when the whole is to the greater segment as the greater segment is to the less.
[Book vi. Def. 5.]

Proposition 30. Problem.
To divide a given straight line in extreme and mean ratio.

Let $A B$ be the given st. line. It is required to divide AB in extreme and mean ratio.
Divide $A B$ in C so that the rect. $A B, B C$ may be equal to the sq. on $A C$.
II. 11 .

Then because the rect. $A B, B C=$ the sq. on $A C$,

$$
\therefore A B: A C:: A C: B C .
$$

vi. 17.
Q.E F.

EXERCISES.

1. $A B C D E$ is a regular pentagon ; if the lines $B E$ and $A D$ intersect in O, shew that each of them is divided in extreme and mean ratio.
2. If the radius of a circle is cut in extreme and mean ratio, the greater segment is equal to the side of a regular decagon inscribed in the circle.

Proposition 31. Theorem.

In a right-angled triangle, any rectilineal figure described on the hypotenuse is equal to the sum of the two similar and similarly described figures on the sides containing the right angle

Let $A B C$ be a right-angled triangle of which $B C$ is the hypotenuse ; and let P, Q, R be similar and similarly described figures on $B C, C A, A B$ respectively.
Then shall the fig. \mathbf{P} be equal to the sum of the figs. \mathbf{Q} and R .
Draw AD perp. to BC.
Then the $\triangle^{s} C B A, A B D$ are similar ;
VI. 8.
$\therefore \mathrm{CB}: \mathrm{BA}:: \mathrm{BA}: \mathrm{BD}$;
$\therefore C B: B D$:: the fig. P : the fig. R; vI. 20 , Cor.
\therefore, inversely, $B D: B C::$ the fig. R : the fig. P. V. 2.
In like manner, $D C: B C::$ the fig. Q : the fig. P;
\therefore the sum of $B D, D C: B C::$ the sum of figs. $R, Q:$ fig. P; v. 15.
but $B C=$ the sum of $B D, D C$;
\therefore the fig. $P=$ the sum of the figs. R and Q.
Q.E.D.

Note. This proposition is a generalization of Book I., Prop. 47. It will be a useful exercise for the student to deduce the general theorem (vi. 31) from the particular case (1. 47) with the aid of vi. 20 , Cor. 2.

EXERCISES.

1. In a right-angled triangle if a perpendicular is drawn from the right angle to the opposite side, the segments of the hypotenuse are in the duplicate ratio of the sides containing the right angle.
2. If, in Proposition 31, the figure on the hypotenuse is equal to the given triangle, the figures on the other two sides are respectively equal to the parts into which the triangle is divided by the perpendicular from the right angle to the hypotenuse.
3. $A X$ and $B Y$ are medians of the triangle $A B C$ which meet in G : if $X Y$ is joined, compare the areas of the triangles $A G B, X G Y$.
4. Shew that similar triangles are to one another in the duplicate ratio of (i) corresponding medians, (ii) the radii of their inscribed circles, (iii) the radii of their circumscribed circles.
5. $D E F$ is the pedal triangle of the triangle $A B C$; prove that the triangle $A B C$ is to the triangle DBF in the duplicate ratio of $A B$ to $B D$. Hence shew that
the fig. $A F D C$: the $\triangle B F D:: A D^{2}: B D^{2}$.
6. The base $B C$ of a triangle $A B C$ is produced to a point D such that $B D: D C$ in the duplicate ratio of $B A: A C$. Shew that $A D$ is a mean proportional between $B D$ and $D C$.
7. Bisect a triangle by a line drawn parallel to one of its sides.
8. Shew how to draw a line parallel to the base of a triangle so as to form with the other two sides produced a triangle double of the given triangle.
9. If through any point within a triangle lines are drawn from the angles to cut the opposite sides, the segments of any one side will have to each other the ratio compounded of the ratios of the segments of the other sides.
10. Draw a straight line parallel to the base of an isosceles triangle so as to cut off a triangle which has to the whole triangle the ratio of the base to a side.
11. Through a given point, between two straight lines containing a given angle, draw a line which shall cut off a triangle equal to a given rectilineal figure.

Obs. The 32 nd Proposition as given by Euclid is defective, and as it is never applied, we have omitted it.

Proposition 33. Theorem.

In equal circles, angles, whether at the centres or the circumferences, have the same ratio as the arcs on which they stand: so also have the sectors.

Let $A B C$ and DEF be equal circles, and let BGC, EHF be angles at the centres, and BAC and EDF angles at the $O^{\text {cos }}$.
Then shall
(i) the $\angle \mathrm{BGC}$: the $\angle \mathrm{EHF}$:: the arc BC : the arc EF ;
(ii) the $\angle \mathrm{BAC}$: the $\angle \mathrm{EDF}::$ the arc BC : the arc EF ;
(iii) the sector BGC : the sector EHF :: the arc BC : the arc EF .
Along the \bigcirc^{∞} of the \odot ABC take any number of arcs $C K$, KL each equal to $B C$; and along the $O^{c e}$ of the \odot DEF take any number of arcs $F M, M N, N R$ each equal to $E F$.

Join GK, GL, HM, HN, HR.
(i) Then the $\angle^{8} \mathrm{BGC}, \mathrm{CGK}, \mathrm{KGL}$ are all equal,
for they stand on the equal ares BC, CK, KL: III. 27.
\therefore the $\angle \mathrm{BGL}$ is the same multiple of the $\angle \mathrm{BGC}$ that the are $B L$ is of the are $B C$.
Similarly, the $\angle E H R$ is the same multiple of the $\angle E H F$ that the arc ER is of the arc EF.

And if the are $B L=$ the are $E R$, the $\angle B G L=$ the $\angle E H R$; III. 27.
and if the arc $B L$ is greater than the arc $E R$, the $\angle B G L$ is greater than the $\angle E H R$; and if the are BL is less than the are ER, the $\angle B G L$ is less than the $\angle E H R$.

Now since there are four magnitudes, namely the $\angle^{8} B G C, E H F$ and the ares $B C, E F$; and of the antecedents any equimultiples have been taken, namely the $\angle B G L$ and the are BL ; and of the consequents any equimultiples have been taken, namely the $\angle E H R$ and the are ER:
and since it has been proved that the $\angle B G L$ is greater than, equal to, or less than the $\angle E H R$, according as $B L$ is greater than, equal to, or less than ER ;
\therefore the four original magnitudes are proportionals; v. Def. 5 . that is, the $\angle B G C$: the $\angle E H F$:: the are BC : the are $E F$.
(ii) And since the $\angle \mathrm{BGC}=$ twice the $\angle \mathrm{BAC}$,
III. 20. and the $\angle E H F=$ twice the $\angle E D F$;
\therefore the $\angle B A C$: the $\angle E D F$:: the arc $B C$: the arc EF. v. 8 .

(iii) Join BC, CK; and in the arcs BC, CK take any points X, O.

> Join BX, Xc, CO, OK.

Then in the \triangle^{8} BGC, CGK,
Because $\left\{\begin{aligned} \mathrm{BG} & =\mathrm{CG}, \\ \mathrm{GC} & =\mathrm{GK}, \\ \text { and the } \angle \mathrm{BGC} & =\text { the } \angle \mathrm{CGK} \text {; }\end{aligned}\right.$
III. 27.

$$
\therefore B C=C K \text {; }
$$

I. 4 .
and the $\triangle B G C=$ the $\triangle C G K$.
And because the are $B C=$ the arc $C K$,
Constr.
\therefore the remaining are $\mathrm{BAC}=$ the remaining arc CAK:

$$
\therefore \text { the } \angle B X C=\text { the } \angle C O K \text {; }
$$

III. 27.
\therefore the segment BXC is similar to the segment COK; iII. Def. 10.
and these segments stand on equal chords BC, CK;
\therefore the segment $\mathrm{BXC}=$ the segment COK. III. 24.
And the $\triangle B G C=$ the $\triangle C G K$;
\therefore the sector $\mathrm{BGC}=$ the sector CGK.

Similarly it may be shewn that the sectors BGC, CGK, KGL are all equal ; and likewise the sectors EHF, FHM, MHN, NHR are all equal. \therefore the sector BGL is the same multiple of the sector BGC that the are $B L$ is of the arc $B C$;
and the sector EHR is the same multiple of the sector EHF that the arc ER is of the are EF.

And if the arc $\mathrm{BL}=$ the arc ER ,
the sector BGL = the sector EHR: Proved. and if the arc BL is greater than the are ER, the sector BGL is greater than the sector EHP.:
and if the arc BL is less than the are ER, the sector BGL is less than the sector EHR.
Now since there are four magnitudes, namely, the sectors $B G C, E H F$ and the ares $B C, E F$; and of the antecedents any equimultiples have been taken, namely the sector BGL and the arc BL ; and of the consequents any equimultiples have been taken, namely the sector EHR and the arc ER:
and since it has been shewn that the sector BGL is greater than, equal to, or less than the sector EHR, according as the arc $B L$ is greater than, equal to, or less than the arc $E R$;
\therefore the four original magnitudes are proportionals ;
v. Def. 5 .
that is, the sector BGC : the sector $E H F$:: the arc $B C$: the are $E F$. Q.E.D.

QUESTIONS FOR REVISION.

1. Explain why the operation known as Allernately requires that the four terms of a proportion should be of the same kind. Shew that this is unnecessary in the case of Inversely.
2. State and prove algebraically the theorem known as Componendo. In what proposition is this principle applied?
3. Enumciate and prove algebraically the operation used in Book vi. under the name Ex Equali.

Also prove the same theorem in the following more general form:
If there are two sets of magnitudes, such that the first is to the second of the first set as the first to the second of the other set, and the second to the third of the first set as the second to the third of the other, and so on throughout: then the first shall be to the last of the first set as the first to the last of the other.
4. Explain the operation Addendo, and give an algebraical proof of it. In what proposition of Book vi. is this operation employed?
5. Give the geometrical and algebraical definitions of the ratio compounded of given ratios, and shew that the two definitions agree.

By what artifice would Euclid represent the ratio compounded of the ratios $A: B$ and $C: D$?
6. Two parallelograms $A B C D, E F G H$ are equiangular to one another: if AB, BC are respectively 21 and 18 inches in length, and if EF, FG are 27 and 35 inches; shew that the areas of the parallelograms are in the ratio 2:5.
7. If $A: B=X: Y, \quad$ and $C: B=Z: Y$;
shew that $\quad A+C: B=X+Z: Y$.
In what proposition of Book vi. is this principle used?
Explain and illustrate the necessity of the step invertendo in this proposition.
8. When is a straight line said to be divided in extreme and mean ratio?

If a line 10 inches in length is so divided, shew that the lengths of the segments are approximately $6 \cdot 2$ inches and 3.8 inches.

Shew also that the segments of any line divided in extreme and mean ratio are incommensurable.

Proposition B. Theorem.

If the vertical angle of a triangle be bisected by a straight line which cuts the base, the rectangle contained by the sides of the triangle shall be equal to the rectangle contained by the segments of the base, together with the square on the struight line which bisects the angle.

Let $A B C$ be a triangle, having the $\angle B A C$ bisected by $A D$. Then shall
the rect. $\mathrm{BA}, \mathrm{AC}=$ the rect. BD, DC, with the sq. on AD .
Describe a circle about the $\triangle A B C$, Iv. 5 . and produce $A D$ to meet the $O^{c e}$ in E. Join EC.
Then in the $\triangle^{8} B A D, E A C$, because the $\angle B A D=$ the $\angle E A C$,

Hyp. and the $\angle A B D=$ the $\angle A E C$ in the same segment; iII. 21.
\therefore the remaining $\angle B D A=$ the remaining $\angle E C A ;$ I. 32 . that is, the $\triangle B A D$ is equiangular to the $\triangle E A C$.

$$
\therefore B A: A D:: E A: A C ;
$$

VI. 4.
\therefore the rect. $B A, A C=$ the rect. $E A, A D$, vi. 16. $=$ the rect. $E D, D A$, with the sq. on $A D$.
II. 3.

But the rect. ED, DA = the rect. $B D, D C$; 1iI. 35.
\therefore the rect. $B A, A C=$ the rect. $B D, D C$, with the sq. on $A D$.
Q.E D.

EXERCISE.

If the vertical angle BAC is externally bisected by a straight line which meets the base in D, shew that the rectangle contained by $B A, A C$ together with the square on $A D$ is equal to the rectangle contained by the segments of the base.

Proposition C. Tiegrem.

If from the rertical angle of a triungle a straight line be drawn perpendicular to the base, the rectangle contained by the sides of the triamgle shall be equal to the rectangle contained by the perpendicular and the diameter of the circle described about the triangle.

Let $A B C$ be a triangle, and let $A D$ be the perp. from A to the base BC.

Then the rect. BA, AC shall be equal to the rectangle contained by $A D$ and the diameter of the circle circumscribed about the $\triangle A B C$.

Describe a circle about the $\triangle A B C$; IV. 5. draw the diameter $A E$, and join $E C$.

Then in the $\triangle^{8} B A D, E A C$,
the rt. angle $B D A=$ the rt. angle ECA, in the semicircle ECA, and the $\angle A B D=$ the $\angle A E C$, in the same segment; 1II. 21 .
\therefore the remaining $\angle B A D=$ the remaining $\angle E A C ;$ I. 32 . that is, the $\triangle B A D$ is equiangular to the $\triangle E A C$;

$$
\therefore B A: A D:: E A: A C ;
$$

VI. 4.
\therefore the rect. $B A, A C=$ the rect. $E A, A D . \quad$ vi. 16. Q.E.D.

Proposition D. Theorem.

The rectangle contained by the diagonals of a quadrilateral inscribed in a circle is equal to the sum of the two rectangles contained by its opposite sides.

Let $A B C D$ be a quadrilateral inscribed in a circle, and let $A C, B D$ be its diagonals.

Then the rect. AC, BD shall be equal to the sum of the rectangles AB, CD and BC, AD.

> Make the $\angle \mathrm{DAE}$ equal to the $\angle \mathrm{BAC}$;
> I. 23.
> to each add the $\angle E A C$, then the $\angle D A C=$ the $\angle E A B$.
> Then in the $\triangle^{8} E A B, D A C$, the $\angle E A B=$ the $\angle D A C$,

and the $\angle A B E=$ the $\angle A C D$ in the same segment; iII. 21.
\therefore the $\triangle^{s} E A B, D A C$ are equiangular to one another ; I. 32.
$\therefore A B: B E:: A C: C D ;$
vi. 4.
\therefore the rect. $A B, C D=$ the rect. $A C, E B$. VI. 16 .
Again in the $\triangle^{8} D A E, C A B$,
the $\angle D A E=$ the $\angle C A B$,
Constr:
and the $\angle A D E=$ the $\angle A C B$, in the same segment, III. 21.
\therefore the $\triangle^{s} D A E, C A B$ are equiangular to one another ; I. 32.
$\therefore A D: D E:: A C: C B ;$
vi. 4.
\therefore the rect. $B C, A D=$ the rect. $A C, D E$ vi. 16.
But the rect. $\mathrm{AB}, \mathrm{CD}=$ the rect. AC, EB. Proved.
\therefore the sum of the rects. $B C, A D$ and $A B, C D=$ the sum of the rects. $A C, D E$ and $A C, E B$;
that is, the sum of the rects. $B C, A D$ and $A B, C D$

$$
=\text { the rect. } \mathrm{AC}, \mathrm{BD} \text {. II. } 1 .
$$

Note. Propositions B, C, and D do not occur in Euclid, but were added by Robert Simson, who edited Euclid's text in 1756.

Prop. I) is usually known as I'tolemy's theorem, and it is the particular case of the following more general theorem:

The rectangle contained by the diayonnds of a quadrilateral is less than the sum of the rertangles contained by its opposite sides, unless a circle can be circumscribed about the quadrilateral, in which case it is equal to that sum.

EXERCISES.

1. $A B C$ is an isosceles triangle, and on the base, or base produced, any point X is taken : shew that the circunscribed circles of the triangles $A B X, A C X$ are equal.
2. From the extremities B, C of the base of an isosceles triangle $A B C$, straight lines are drawn perpendicular to $A B, A C$ respectively, and intersecting at D : shew that the rectangle $B C, A D$ is double of the rectangle $A B, D B$.
3. If the diagonals of a quadrilateral inscribed in a circle are at right angles, the sum of the rectangles contained by the opposite sides is double the area of the figure.
4. $A B C D$ is a quadrilateral inscribed in a circle, and the diagonal $B D$ bisects $A C$: shew that the rectangle $A D, A B$ is equal to the rectangle DC, CB.
5. If the vertex A of a triangle $A B C$ is joined to any point in the base, it will divide the triangle into two triangles such that their circumscribed circles have radii in the ratio of $A B$ to $A C$.
6. Construct a triangle, having given the base, the vertical angle, and the rectangle contained by the sides.
7. Two triangles of equal area are inscribed in the same circle : shew that the rectangle contained by any two sides of the one is to the rectangle contained by any two sides of the other as the base of the second is to the base of the first.
8. A circle is described round an equilateral triangle, and from any point in the circumference straight lines are drawn to the angular points of the triangle : shew that one of these straight lines is equal to the sum of the other two.
9. $A B C D$ is a quadrilateral inscribed in a circle, and $B D$ bisects the angle $A B C$: if the points A and C are fixed on the circumference of the circle and B is variable in position, shew that the sum of $A B$ and $B C$ has a constant ratio to $B D$.

THEOREMS AND EXAMPLES ON BOOK VI.

I. ON HARMONIC SECTION.

1. To divide a given straight line internally and externally so that its segments may be in a given ratio.

Let $A B$ be the given st. line, and L, M two other st. lines which determine the given ratio.
It is required to divide $A B$ internally and externally in the ratio $L: M$.
Through A and B draw any two par st. lines AH, BK.
From $A H$ cut off $A a$ equal to L,
and from $B K$ cut off $\mathrm{B} b$ and $\mathrm{B} b^{\prime}$ each equal to $\mathrm{M}, \mathrm{B} b^{\prime}$ being taken in the same direction as $A a$, and $B b$ in the opposite direction. Join $a b$, cutting $A B$ in P ;
join $a b^{\prime}$, and produce it to cut $A B$ externally at Q.
Then AB shall be divided internally at P and externally at Q ,
so that and
$A P: P B=L: M$.
$A Q: Q B=L: M$.
The proof follows at once from Euclid vi. 4.
Note. The solution is singular ; that is, only one internal and one external point can be found that will divide the given straight line into segments which have the given ratio.

Definition. A finite straight line is said to be cut harmonically when it is divided internally and externally into segments which have the same ratio.

Thus $A B$ is divided harmonically at P and Q, if

$$
\mathrm{AP}: P B=A Q: Q B .
$$

P and Q are said to be harmonic conjugates of A and B.
Now by taking the above proportion alternately,
we have $\quad P A: A Q=P B: B Q$;
from which it is seen that if P and Q divide $A B$ internally and externally in the same ratio, then A and B divide $P Q$ internally and externally in the same ratio; hence A and B are harmonic conjugates of P and Q.

Example. The base of a triangle is divided harmonically by the internal and external bisectors of the vertical angle:
for in each case the segments of the base are in the ratio of the other sides of the triangle. [Euclid vi. 3 and A.]

Obs. We shall use the terms Arithmetic, Geometric, and Harmonic Means in their ordinary Algebraical sense.

1. If AB is divided internally at P and externally at Q in the same ratio, then AB is the harmonic mean between AQ and AP .

For, by hypothesis, $\mathrm{AQ}: \mathrm{QB}=\mathrm{AP}: \mathrm{PB}$;
\therefore, alternately, $\quad \mathrm{AQ}: \mathrm{AP}=\mathrm{QB}: \mathrm{PB}$, that is, $\quad A Q: A P=A Q-A B: A B-A P$;
$\therefore A P, A B, A Q$ are in Harmonic Progression.
2. If AB is divided harmonically at \mathbf{P} and \mathbf{Q}, and O is the middle point of AB ;

$$
\text { then } \mathrm{OP}, \mathrm{OQ}=\mathrm{OA}^{2} \text {. }
$$

$$
A \quad O P \quad B \quad Q
$$

For since $A B$ is divided harmonically at P and Q, $\therefore A P: P B=A Q: Q B$;
$\therefore A P-P B: A P+P B=A Q-Q B: A Q+Q B$,
or, $20 \mathrm{P}: 20 \mathrm{~A}=20 \mathrm{~A}: 20 \mathrm{Q}$;

$$
\therefore O P . O Q=O A^{2} .
$$

Conversely, if $O P . O Q=O A^{2}$, it may be shewn that

$$
\mathrm{AP}: \mathrm{PB}=\mathrm{AQ}: \mathrm{QB}
$$

that is, that $A B$ is divided harmonically at P and Q.
3. The Arithmetic, Geometric and Harmonic means of two straight lines may be thus represented graplically.

In the adjoining figure, two tangents $A H, A K$ are drawn from any external point A to the circle PHQK; HK is the chord of contact, and the st. line joining A to the centre O cuts the $O^{c e}$ at P and Q.

Then (i) $A O$ is the Arithmetic mean between $A P$ and $A Q$: for clearly

$A O=\frac{1}{2}(A P+A Q)$.
(ii) $A H$ is the Geometric mean between $A P$ and $A Q$: for $\quad A H^{2}=A P . A Q$. III. 36 .
(iii) $A B$ is the Harmonic mean between $A P$ and $A Q$: for $\mathrm{OA} . \mathrm{OB}=\mathrm{OP}^{2}$; Ex. 1, p. 251.
$\therefore A B$ is cut harmonically at P and Q. Ex. 2, p. 385.
That is, $A B$ is the Harmonic mean between $A P$ and $A Q$.
And from the similar triangles $\mathrm{OAH}, \mathrm{HAB}$,

$$
\begin{aligned}
O A: A H & =A H: A B, \\
\therefore \quad A O \cdot A B & =A H^{2} ;
\end{aligned}
$$

vi. 17.
\therefore the Geometric mean between two straight lines is the mean proportional between their Arithmetic and Harmonic means.
4. Given the base of a triangle and the ratio of the other sides, to find the locus of the vertex.

Let $B C$ be the given base, and let BAC be any triangle standing upon it, such that $B A: A C=$ the given ratio.
It is required to find the locus of \mathbf{A}.
Bisect the $\angle B A C$ internally and
 externally by AP, AQ.

Then $B C$ is divided internally at P, and externally at Q, so that $B P: P C=B Q: Q C=$ the given ratio ;
$\therefore P$ and Q are fixed points.
And since $A P, A Q$ are the internal and external bisectors of the $\angle B A C$,
\therefore the $\angle P A Q$ is a rt. angle;
\therefore the locus of A is a circle described on PQ as diameter.

Exercise. Given three points B, P, C in a straight line: find the locus of points at which BP and PC subtend equal angles.

DEFINITIONS.

1. A series of points in a straight line is called a range. If the range consists of four points, of which one pair are harmonic conjugates with respect to the other pair, it is said to be a harmonic range.
2. A series of straight lines drawn through a point is called a pencil.

The joint of concurrence is called the vertex of the pencil, and each of the straight lines is called a ray.

A pencil of four rays drawn from any point to a harmonic range is said to be a harmonic pencil.
3. A straight line drawn to cut a system of lines is called a transversal.
4. A system of four straight lines, no three of which are concurrent, is called a complete quadrilateral.

These straight lines will intersect two and two in six points, called the vertices of the quadrilateral ; the three straight lines which join the opposite vertices are diagonals.

Theorems on Harmonic Section.

1. If a transversal is drawn parallel to one ray of a harmonic pencil, the other three rays intercept equal parts upon it: and conversely.
2. Any transversal is cut harmonically by the rays of a harmonic pencil.
3. In a harmonic pencil, if one ray bisect the angle between the other pair of rays, it is perpendicular to its conjugate ray. Conversely, if one pair of rays form a right angle, then they bisect internally and externally the angle between the other pair.
4. If $\mathrm{A}, \mathrm{P}, \mathrm{B}, \mathrm{Q}$ and $\mathrm{a}, \mathrm{p}, \mathrm{b}, \mathrm{q}$ are harmonic ranges, one on each of two given straight lines, and if $\mathrm{Aa}, \mathrm{Pp}, \mathrm{Bb}$, the straight lines which join three pairs of corresponding points, meet at \mathbf{S}; then will $\mathbf{Q q}$ also pass through S.
5. If two straight lines intersect at A , and if $\mathrm{A}, \mathrm{P}, \mathrm{B}, \mathrm{Q}$ and $\mathrm{A}, \mathbf{p}, \mathrm{b}, \mathbf{q}$ are two harmonic ranges one on each straight line (the points corresponding as indicated by the letters), then $\mathrm{Pp}, \mathrm{Bb}, \mathrm{Qq}$ will be concurrent : also $\mathrm{Pq}, \mathrm{Bb}, \mathrm{Qp}$ will be concurrent.
6. Use Theorem 5 to prove that in a complete quadrilateral in which the three diagonals are drawn, the straight line joining any pair of opposite vertices is cut harmonically by the other two diagonals.

II. ON CENTRES OF SIMILARITY AND SIMILITUDE.

1. If any two unequal similar figures are placed so that their homologous sides are parallel, the lines joining corresponding points in the two figures meet in a point, whose distances from any two corresponding points are in the ratio of any pair of homologous sides.

Let $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be two similar figures, and let them be placed so that their homologous sides are parallel ; namely, $A B, B C, C D$, DA parallel to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} D^{\prime}, D^{\prime} A^{\prime}$ respectively.
Then shall $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$ meet in a point, whose distances from any two corresponding points shall be in the ratio of any pair of homologous sides.
Let $A A^{\prime}$ meet $B B^{\prime}$, produced if necessary, in S.

$$
\begin{aligned}
& \text { Then because } A B \text { is par to } A^{\prime} B^{\prime} \text {; } \\
& \therefore \text { the } \triangle S A B, S A^{\prime} B^{\prime} \text { are equiangular ; } \\
& \therefore S A: S A^{\prime}=A B: A^{\prime} B^{\prime} ;
\end{aligned}
$$

Hyp.
vi. 4.
$\therefore A A^{\prime}$ divides B^{\prime}, externally or internally, in the ratio of $A B$ to $A^{\prime} B^{\prime}$.
Sirnilarly it may be shewn that $C C^{\prime}$ divides $B B^{\prime}$ in the ratio of $B C$ to $B^{\prime} \mathrm{C}^{\prime}$.

> But since the figures are similar,

$$
B C: B^{\prime} C^{\prime}=A B: A^{\prime} B^{\prime} ;
$$

$\therefore A A^{\prime}$ and $C C^{\prime}$ divide $B B^{\prime}$ in the same ratio:
that is, $A A^{\prime}, B B^{\prime}, C C^{\prime}$ meet in the same point S.
In like manner it may be proved that $D D^{\prime}$ meets $C C^{\prime}$ in the point S.
$\therefore A^{\prime}, B^{\prime}, C C^{\prime}, D^{\prime}$ are concurrent, and each of these lines is divided at S , externally or internally, in the ratio of a pair of homologous sides of the two figures.
Q.E.D.

Cor. If any line is drawn through S meeting any pair of homologous sides in K and K^{\prime}, the ratio SK : SK^{\prime} is constant, and equal to the ratio of any pair of homologous sides.

Note. It will be seen that the lines joining corresponding points are divided externally or internally at S according as the corresponding sides are drawn in the same or in opposite directions. In either case the point of concurrence S is called a centre of similarity of the two figures.
2. A common tanyent STT^{\prime} to two circles whose contres are $\mathrm{C}, \mathrm{C}^{\prime}$, mets: the line of centres in S . If through S any straight line is dramn m. elint these two circles in P, Q, and $\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}$, rospectively, then the radii CP, CQ shall be respectively parallel to $\mathrm{C}^{\prime} \mathrm{P}^{\prime}, \mathrm{C}^{\prime} \mathrm{Q}^{\prime}$. Also the rectangles $\mathrm{SQ} . \mathrm{SP}^{\prime}, \mathrm{SP}$. SQ^{\prime} shall each be equal to the rectangle ST . ST'.

Join CT, CP, CQ and $C^{\prime} T^{\prime}, C^{\prime} P^{\prime}, C^{\prime} Q^{\prime}$.
Then since each of the \angle^{s} CTS, C' T^{\prime} 'S is a right angle, III. 18. \therefore CT is par ${ }^{1}$ to $\mathrm{C}^{\prime} \mathrm{T}^{\prime}$;
\therefore the $\triangle^{8} S C T, S C^{\prime} T^{\prime}$ are equiangular ;

$$
\therefore \mathrm{SC}: \mathrm{SC}^{\prime}=\mathrm{CT}: \mathrm{C}^{\prime} \mathrm{T}^{\prime}
$$

$$
=C P: C^{\prime} P^{\prime}
$$

\therefore the $\triangle^{8} S C P, S C^{\prime} P^{\prime}$ are similar ; vi. 7. \therefore the $\angle S C P=$ the $S C^{\prime} P^{\prime}$;
$\therefore \quad C P$ is par to $C^{\prime} P^{\prime}$.
Similarly CQ is par ${ }^{1}$ to $\mathrm{C}^{\prime} \mathrm{Q}^{\prime}$.
Again, it easily follows that TP, TQ are par ${ }^{1}$ to $T^{\prime} P^{\prime}, T^{\prime} Q^{\prime}$ respectively ;
\therefore the \triangle^{s} STP, $\mathrm{ST}^{\prime} \mathrm{P}^{\prime}$ are similar.
Now the rect. $\mathrm{SP} . \mathrm{SQ}=$ the sq. on ST ;
III. 36.
$\therefore \mathrm{SP}: \mathrm{ST}=\mathrm{ST}: \mathrm{SQ}$,
and $\mathrm{SP}: \mathrm{ST}=\mathrm{SP}^{\prime}: \mathrm{ST}^{\prime}$;
$\therefore \mathrm{ST}: \mathrm{SQ}=\mathrm{SP}^{\prime}: \mathrm{ST}^{\prime}$;
\therefore the rect. $\mathrm{ST} . \mathrm{ST}^{\prime}=\mathrm{SQ} . \mathrm{SP}^{\prime}$.
In the same way it may be proved that

$$
\text { the rect. } \mathrm{SP}^{\prime} . \mathrm{SQ}^{\prime}=\text { the rect. } \mathrm{ST}^{2} . \mathrm{ST}^{\prime} \text {. }
$$

Q.E.D.

Cor. 1. It has been proved that

$$
S C: S C^{\prime}=C P: C^{\prime} P^{\prime} ;
$$

thus the external common tangents to the two circles meet at a point S which divides the line of centres externally in the ratio of the radii.

Similarly it may be shewn that the transverse common tangents meet at a point S^{\prime} which divides the line of centres internally in the ratio of the radii.

Cor. 2. $C C^{\prime}$ is divided harmonically at S and S^{\prime}.
Definition. The points S and S^{\prime} which divide externally and internally the line of centres of two circles in the ratio of their radii are called the external and internal centres of similitude respectively.

1. Inscribe a square in a given triangle.
2. In a given triangle inscribe a triangle similar and similarly situated to a given triangle.
3. Inscribe a square in a given sector of circle, so that two angular points shall be on the are of the sector and the other two on the bounding radii.
4. In the figure on page 298, if DI meets the inscribed circle in X , shew that $\mathrm{A}, \mathrm{X}, \mathrm{D}_{1}$ are collinear. Also if Al_{1} meets the base in Y shew that II_{1} is divided harmonically at Y and A .
5. With the notation on page 302 shew that O and G are respectively the external and internal centres of similitude of the circumscribed and nine-points circle.
6. If a variable circle touches two fixed circles, the line joining their points of contact passes through a centre of similitude. Distinguish between the different cases.
7. Describe a circle which shall touch two given circles and pass through a given point.
8. Describe a circle which shall touch three given circles.
9. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are the centres of three given circles; $\mathrm{S}_{1}^{\prime}, \mathrm{S}_{1}$, are the internal and external centres of similitude of the pair of circles whose centres are $\mathrm{C}_{2}, \mathrm{C}_{3}$, and $\mathrm{S}_{2}^{\prime}, \mathrm{S}_{2}, \mathrm{~S}_{3}^{\prime}, \mathrm{S}_{3}$, have similar meanings with regard to the other two pairs of circles: shew that
(i) $\mathrm{S}_{1}^{\prime} \mathrm{C}_{1}, \mathrm{~S}_{2}^{\prime} \mathrm{C}_{2}, \mathrm{~S}_{3}^{\prime} \mathrm{C}_{3}$ are concurrent ;
(ii) the six points $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{1}^{\prime}, \mathrm{S}_{2}^{\prime}, \mathrm{S}_{3}^{\prime}$, lie three and three on four straight lines. [See Ex. 1 and 2, pp. 400, 401.]

III. ON POLE AND POLAR.

DEFINITIONS.

1. If in any straight line drawn from the centre of a circle two points are taken such that the rectangle contained by their distances from the centre is equal to the square on the radius, each point is said to be the inverse of the other.

Thus in the figure given on the following page, if O is the centre of the circle, and if $O P . O Q=$ (radius) $)^{2}$, then each of the points P and Q is the inverse of the other.

It is clear that if one of these points is within the circle the other must be without it.
2. The polar of a given point with respect to a given circle is the straight line drawn through the inverse of the given point at right angles to the line which joins the given point to the centre: and with reference to the polar the given point is called the pole.

Thus in the adjoining figure, if $\mathrm{OP} . \mathrm{OQ}=(\text { (radius })^{2}$, and if through

P and $Q, L M$ and HK are drawn perp. to OP; then HK is the polar of the point P, and P is the pole of the st. line HK with respect to the given circle: also $L M$ is the polar of the point Q, and Q the pole of LM.

It is clear that the polar of an external point must intersect the circle, and that the polar of an internal point must fall without it: also that the polar of a point on the circumference is the tangent at that point.

1. Now it has been proved [see Ex. 1, page 251] that if from an external point P two tangents PH, PK are drawn to a circle, of which O is the centre, then OP cuts the chord of contact HK at right angles at Q, so that

$$
O P . O Q=(\text { radius })^{2} ;
$$

\therefore HK is the polar of P with respect to the circle.

Hence we conclude that
The polar of an external point with
 reference to a circle is the chord of contact of tangents drawn from the given point to the circle.
2. If A and P are any two points, and if the polar of A with respect to any circle passes through P , then the polar of P must puass through A.

Let $B C$ be the polar of the point A with respect to a circle whose centre is O , and let BC pass through P .
Then shall the polar of P pass through A .
Join OP; and from A draw AQ perp. to OP. We shall shew that AQ is the polar of P.

Now since $B C$ is the polar of A,
\therefore the $\angle A B P$ is a rt. angle ;
Def. 2, page 391.
and the $\angle A Q P$ is a rt. angle: Constr.
 \therefore the four points A, B, P, Q are concyclic;

$$
\therefore O Q . O P=O A . O B \quad \text { III. } 36
$$

$=(\text { radius })^{2}$, for CB is the polar of A :
$\therefore P$ and Q are inverse points with respect to the given circle. And since $A Q$ is perp. to $O P$,
$\therefore A Q$ is the polar of P.
That is, the polar of P passes through A.
Q.E.D.

Note. A similar proof applies to the case when the given point A is without the circle, and the polar BC cuts it.

The above Theorem is known as the Reciprocal Property of Pole and Polar.
3. To prove that the locus of the intersection of tangents drawn to a circle at the extremities of all chords which pass through a given point within the circle is the polar of that point.

Let A be the given point within the circle. Let HK be any chord passing through A; and let the tangents at H and K intersect at P.
It is required to prove that the locus of \mathbf{P} is the polar of the point \mathbf{A}.
I. To shew that P lies on the polar of A.

Since HK is the chord of contact of tangents drawn from P,
$\therefore H K$ is the polar of P. Ex. 1, p. 391.

But HK, the polar of P, passes through A ;
\therefore the polar of A passes through P: Ex. 2, p. 392. that is, the point P lies on the polar of A.
II. To shew that any point on the polar of A satisfies the given conditions.

Let $B C$ be the polar of A, and let P be any point on it.
Draw tangents PH, PK, and let HK be the chord of contact.
Now from Ex. 1, p. 391, we know that the chord of contact HK is the polar of P,
and we also know that the polar of P must pass through A; for P is on $B C$, the polar of A :
$\therefore P$ is the point of intersection of tangents drawn at the extremities of a chord passing through A.

From I. and II. we conclude that the required locus is the polar of A.

Note. If A is without the circle, the theorem demonstrated in Part I. of the above proof still holds good; but the converse theorem in Part II. is not true for all points in BC. For if A is without the circle, the polar BC will intersect it; and no point on that part of the polar which is within the circle can be the point of intersection of tangents.

We now see that
(i) The Polar of an external point with respect to a circle is the chord of contact of tangents drawn from it.
(ii) The Polar of an internal point is the locus of the intersections of tangents drawn at the extremities of all chords which pass through $i t$.
(iii) The Polar of a point on the circumference is the tangent at that point.

The following theorem is known as the Harmonic Property of Pole and Polar.
4. Any straight line drawn through a point is cut harmonically by the point, its polar, and the circumference of the circle.

Let $A H B$ be a circle, P the given point and HK its polar; let $P a q b$ be any straight line drawn through P meeting the polar at q and the O ee of the circle at a and b.
Then shall P, a, q, b be a harmonic range.

In the case here considered, P is an external point.

Join P to the centre O, and let $P O$ cut the $\bigcirc^{\text {co }}$ at A and B : let the polar of
 P cut the $O^{c e}$ at H and K, and $P O$ at Q.

Join $\mathrm{Q} a, \mathrm{Q} b, \mathrm{O} a, \mathrm{OH}, \mathrm{O} b, \mathrm{PH}$.
Then PH is a tangent to the \odot AHB. Ex. 1, p. 391. From the similar triangles OPH, HPQ,

$$
\begin{aligned}
\mathrm{OP}: \mathrm{PH}=\mathrm{PH}: P Q . \\
\therefore P Q: P O=\mathrm{PH}^{2}
\end{aligned}
$$

$$
=\mathrm{P} a \cdot \mathrm{P} b
$$

\therefore the points $\mathrm{O}, \mathrm{Q}, a, b$ are concyclic:

$$
\begin{aligned}
\therefore \text { the } \angle a Q A & =\text { the } \angle a b \mathrm{O} \\
& =\text { the } \angle \mathrm{O} a b .5, \text { p. } 241 . \\
& =\text { the } \angle \mathrm{OQb}, \text { in the same segment. }
\end{aligned}
$$

And since $Q H$ is perp. to $A B$, \therefore the $\angle a Q H=$ the $\angle b \mathbf{Q H}$.
$\therefore \mathrm{Qq}$ and QP are the internal and external bisectors of the $\angle a \mathrm{Qb}$:
$\therefore \mathrm{P}, \alpha, q, b$ is a harmonic range. Ex. 1, p. 385.
The student should investigate for himself the case when P is an internal point.

Conversely, it may be shewn that if through a fixed point P any secant is drawn cutting the circumference of a given circle at a and b , and if q is the harmonic conjugate of P with respect to a, b; then the locus of q is the polar of P with respect to the given circle.

DEFINITION.

A triangle so related to a circle that each side is the polar of the opposite vertex is said to be self-conjugate with respect to the circle.

EXAMPLES ON POLE AND POLAR.

1. The straight line which joins any two points is the polar with respect to a given circle of the point of intersection of their polaris.
2. The point of intersection of any two straight lines is the pole of the straight line which joins their poles.
3. Find the locus of the poles of all straight lines which pass through a given point.
4. Find the locus of the poles, with respect to a given circle, of tangents drawn to a concentric circle.
5. If two circles cut one another orthogonally and PQ be any diameter of one of them; shew that the polar of P with regrird to the other circle passes through \mathbf{Q}.
6. If two circles cut one another orthogonally, the centre of each circle is the pole of their common chord with respect to the other circle.
7. Any two points subtend at the centre of a circle an angle equal to one of the angles formed by the polars of the given points.
8. O is the centre of a given circle, and AB a fixed straight line.

P is any point in AB ; find the locus of the point inverse to P with respect to the circle.
9. Given a circle, and a fixed point O on its circumference: P is any point on the circle. find the locus of the point inverse to P with respect to any circle whose centre is O .
10. Given two points A and B , and a circle whose centre is O ; shew that the rectangle contained by OA and the perpendicular from B on the polar of A is equal to the rectangle contained by OB and the perpendicular from A on the polar of B .
11. Four points A, B, C, D are taken in order on the circumference of a circle; $D A, C B$ intersect at $P, A C, B D$ at Q, and $B A, C D$ in R : shew that ihe triangle PQR is self-conjugate with respect to the circle.
12. Give a linear construction for finding the polar of a given point with respect to a given circle. Hence find a linear construction for drawing a tangent to a circle from on external point.
13. If a triangle is self-conjugate with respect to a circle, the centre of the circle is at the orthocentre of the triangle.
14. The pclars, with respect to a given circle, of the four points of a harmonic range form a harmonic pencil : and conversely.

IV. ON THE RADICAL AXIS.

1. To find the locus of points from which the tangents drawn to two given circles are equal.

Fig. I.

Fig. 2.

Let A and B be the centres of the given circles, whose radii are a and b; and let P be any point such that the tangent PQ drawn to the circle (A) is equal to the tangent PR drawn to the circle (B).

It is required to find the locus of P .
Join PA, PB, AQ, BR, AB ; and from P draw PS perp. to $A B$.

$$
\text { Then because } \mathrm{PQ}=\mathrm{PR}, \quad \therefore \mathrm{PQ}^{2}=P \mathrm{PR}^{2} \text {. }
$$

$$
\text { But } P Q^{2}=P A^{2}-A Q^{2} ; \text { and } P R^{2}=P B^{2}-B R^{2} \text { : }
$$

that is,

$$
\begin{aligned}
& \therefore \mathrm{PA}^{2}-\mathrm{AQ}^{2}=\mathrm{PB}^{2}-\mathrm{BR}^{2} ; \\
& \mathrm{PS}^{2}+\mathrm{AS}^{2}-a^{2}=\mathrm{PS}^{2}+\mathrm{SB}^{2}-b^{2} ;
\end{aligned}
$$

$$
\text { I. } 47 .
$$

or,
Hence $A B$ is divided at S , so that $\mathrm{AS}^{2}-\mathrm{SB}^{2}=a^{2}-b^{2}$:
$\therefore \mathrm{S}$ is a fixed point.
Hence all points from which equal tangents can be drawn to the two circles lie on the straight line which cuts $A B$ at rt. angles, so that the difference of the squares on the segments of $A B$ is equal to the difference of the squares on the radii.

Again, by simply retracing these steps, it may be shewn that in Fig. 1 every point in SP, and in Fig. 2 every point in SP exterior to the circles, is such that tangents drawn from it to the two circles are equal.

Hence we conclude that in Fig. 1 the whole line SP is the required locus, and in Fig. 2 that part of SP which is without the circles.

In either case SP is said to be the Radical Axis of the two circles.

Corollary. If the circles cut one another as in Fig. 2, it is ctear that the Radical Aais is identical with the straight line which pusses through the points of intersection of the circles; for it follows readily from ini. 36 that tangents drawn to two intersecting circles from any point in the common chood produced are equal.
2. The Radical Axes of three circles taken in pairs are concurrent.

Let there be three circles whose centres are A, B, C.
Let $O Z$ be the radical axis of the $\odot^{s}(A)$ and (B);
and OY the Radical Axis of the $\odot^{s}(A)$ and (C), O being the point of their intersection.

Then shall the radical axis of the $\odot^{8}(\mathrm{~B})$ and (C) pass through O .
It will be found that the point O is either without or within all the circles.
I. When O is without the circles.

From O draw OP, OQ, OR tangents to the $\odot^{s}(A),(B),(C)$.
Then because O is a point on the radical axis of (A) and (B); Hyp. $\therefore \quad O P=O Q$.
And because O is a point on the radical axis of (A) and (C), Hyp.

$$
\therefore \mathrm{OP}=\mathrm{OR} \text {; }
$$

$\therefore O Q=O R$;
$\therefore \quad \mathrm{O}$ is a point on the radical axis of (B) and (C);
that is, the radical axis of (B) and (C) passes through O.
II. If the circles intersect in such a way that O is within them all ;
the radical axes are then the common chords of the three circles taken two and two ; and it is required to prove that these commos chords are concurrent. This may be shewn indirectly by iII. 35 .

Definition. The point of intersection of the radical axes of three circles taken in pairs is called the radical centre.
3. To draw the radical axis of two given circles.

Let A and B be the centres of the given circles. It is required to draw their radical axis.
If the given circles intersect, then the st. line drawn through their points of intersection will be the radical axis. [Ex. 1, Cor. p. 397.]

But if the given circles do not intersect,
describe any circle so as to cut them in E, F and G, H.
Join EF and HG, and produce them to meet in P.
Join $A B$; and from P draw PS perp. to $A B$.
Then PS shall be the radical axis of the $\odot^{s}(\mathrm{~A}),(\mathrm{B})$.
[The proof follows from III. 36 and Ex. 1, p. 396.]
Definition. If each pair of circles in a given system have the same radical axis, the circles are said to be co-axal.

EXAMPLES ON THE RADICAL AXIS.

1. Shew that the radical axis of two circles bisects any one of their common tangents.
2. If tangents are drawn to two circles from any point on their radical axis; shew that a circle described with this point as centre and any one of the tangents as radius, cuts both the given circles orthogonally.
3. O is the radical centre of three circles, and from O a tangent CT is drawn to any one of them: shew that a circle whose centre is \mathbf{O} and radius OT cuts all the given circles orthogonally.
4. If three circles touch one another, taken two and two, shew that their common tangent.s at the points of contact are concurrent.
5. If circles are described on the three sides of a triangle as diameter, their radical centre is the orthocentre of the triangle.
6. All circles which pass through a fixed point and cut a !iven sirde orthogonally, pass through a serond fixed point.
7. Find the locus of the centres of all circles which pass through a guven point und cut a given circle orthoyonally.
8. Describe a circle to pass through two given points and cut a given circle orthogonally.
9. Find the locus of the centres of all circles which cut two given circles orthogonally.
10. Describe a circle to pass through a given point and cut two given circles orthogonally.
11. The difference of the squares on the tandents drawn from any point to two circles is equal to twice the rectangle containced by the straight line joining their centres and the perpendicular from the given point on their radical axis.
12. In a system of co-axal circles which do not intersect, any point is taken on the radical axis; shew that a circle described from this point as centre, with radius equal to the tangent dra:on from it to any one of the circles, will meet the line of centres in two tixed points.
[These fixed points are called the Limiting Points of the system.]
13. In a system of co-axal circles the two limiting points and the points in which any one circle of the system cuts the line of centres form a harmonic range.
14. In a system of co-axal circles a limiting point has the same polar with regard to all the circles of the system.
15. If two circles are orthogonal any diameter of one is cut harmonically by the other.

V. ON TRANSVERSALS.

In the two following theorems we are to suppose that the segments of straight lines are expressed numerically in terms of some common unit; and the ratio of one such segment to another will be denoted by the fraction of which the first is the numerator and the second the denominator.
H.S.E.

2 c

Definition. A straight line drawn to cut a given system of lines is called a transversal.

1. If three concurrent straight limes are drawn from the angular points of a triangle to meet the orposite sides, then the product of three -alternate segments taken in order is equal to the product of the other three segments.

Let $A D, B E, C F$ be drawn from the vertices of the $\triangle A B C$ to intersect at O, and cut the opposite sides at D, E, F.

Then shall BD.CE. $A F=D C . E A . F B$.
Now the $\triangle^{8} A O B, A O C$ have a common base $A O$; and it may be shewn that

$$
\begin{aligned}
& B D: D C=\text { the alt. of } \triangle A O B: \text { the alt. of } \triangle A O C ; \\
& \therefore \frac{B D}{D C}=\triangle A O B ; \\
& \frac{C E}{\triangle A O C} ;
\end{aligned}
$$

.and

$$
\frac{A F}{F B}=\frac{\triangle C O A}{\triangle C O B}
$$

Multiplying these ratios, we have

$$
\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B}=1 ;
$$

$$
B D \cdot C E \cdot A F=D C \cdot E A \cdot F B .
$$

Note. The converse of this theorem, which may be proved indirectly, is very important : it may be enunciated thus :

If three straight lines drawn from the vertices of a triangle cut the opposite sides so that the product of three alternate segments taken in order is equal to the product of the other three, then the three straight lines are concurrent.

That is, if $\mathrm{BD} . \mathrm{CE} \cdot \mathrm{AF}=\mathrm{DC} \cdot \mathrm{EA} \cdot \mathrm{FB}$, then $A D, B E, C F$ are concurrent.
2. If a transversal is drawn to cut the sides, or the sides produced, of a triangle, the moduct of three alternate segments taken in order is equal to the product of the other three segments.

Let $A B C$ be a triangle, and let a transversal meet the sides $B C$, $C A, A B$, or these sides produced, at D, E, F.

Then shall BD.CE. AF = DC.EA.FB.
Draw $A H$ par ${ }^{1}$ to $B C$, meeting the transversal at 4 .
Then from the similar $\triangle^{s} D F B, H A F$,

$$
\frac{B D}{F B}=\frac{H A}{A F}:
$$

and from the similar \triangle^{8} DCE, $H A E$,

$$
\frac{C E}{D C}=\frac{E A}{H A}:
$$

\therefore, by multiplication, $\frac{B D}{F B} \cdot \frac{C E}{D C}=\frac{E A}{A F}$;
that is,
or,

BD. CE. AF $\overline{D C} \cdot E A \cdot F B=1$, $B D \cdot C E \cdot A F=D C \cdot E A \cdot F B$.
Q.E.D.

Note. In this theorem the transversal must either meet two sides and the third side produced, as in Fig. 1; or all three sides produced, as in Fig. 2.

The converse of this theorem may bo proved indirectly :
If three points are taken in two sides of a triangle and the third side produced, or in all three sides produced, so that the product of three alternate segments taken in order is equal to the product of the other three segments, the three points are collinear.

DEFINITIONS.

1. If two triangles are such that three straight lines joining corresponding vertices are concurrent, they are said to be co-polar.
2. If two triangles are such that the points of intersection of corresponding sides are collinear, they are said to be co-axial.

The propositions given on pages 111-114 relating to the concurrence of straight lines in a triangle, may be proverl by the method of transversals, and in addition to these the following important theorems may be established.

Theorems to be proved by Transversals.

1. The straight lines which join the vertices of a triangle to the points of contact of the inscribed circle (or any of the three escribed circles) are concurrent.
2. The middle points of the diagonals of a complete quadrilateral are collinear. [See Def. 4, p. 387.]
3. Co-polar triangles are also co-axial ; and conversely co-axial triangles are also co-polar.
4. The six centres of similitude of three circles lie three by three on four straight lines.

MISCELLANEOUS EXAMPLES ON BOOK VI.

1. Through D, any point in the base of a triangle $A B C$, straight lines $D E, D F$ are drawn parallel to the sides $A B, A C$, and meeting the sides at E, F : shew that the triangle $A E F$ is a mean proportional between the triangles $F B D$, EDC.
2. If two triangles have one angle of the one equal to one angle of the other, and a second angle of the one supplementary to a second angle of the other, then the sides about the third angles are proportional.
3. $A E$ bisects the vertical angle of the triangle $A B C$ and meets the base in E; shew that if circles are described about the triangles $A B E, A C E$, the diameters of these circles are to each other in the same ratio as the segments of the base.
4. Through a fixed point O draw a straight line so that the parts intercepted between O and the perpendiculars drawn to the straight line from two other fixed points may have a given ratio.
5. The angle A of a triangle $A B C$ is bisected by $A D$ meeting $B C$ in D, and $A X$ is the median bisecting $B C$: shew that $X D$ has the same ratio to $X B$ as the difference of the sides has to their sum.
6. $A D$ and $A E$ bisect the vertical angle of a triangle internally and externally, meeting the base in D and E; shew that if O is the middle point of $B C$, then $O B$ is a mean proportional between OD and OE.
7. P and Q are fixed points; $A B$ and $C D$ are fixed parallel straight lines; any straight line is drawn from P to meet $A B$ at M, and a straight line is drawn from Q parallel to PM meeting CD at N : shew that the ratio of PM to $Q N$ is constant, and thence shew that the straight line through M and N passes through a fixed point.
8. If C is the middle point of an are of a circle whose chord is $A B$, and D is any point in the conjugate are; shew that

$$
A D+D B: D C:: A B: A C .
$$

9. In the triangle $A B C$ the side $A C$ is double of $B C$. If $C D$, $C E$ bisect the angle $A C B$ internally and externally meeting $A B$ in D and E, shew that the areas of the triangles $C B D, A C D, A B C, C D E$ are as $1,2,3,4$.
10. $A B, A C$ are two chords of a circle; a line parallel to the tangent at A cuts $A B, A C$ in D and E respectively : shew that the rectangle $A B, A D$ is equal to the rectangle $A C, A E$.
11. If from any point on the hypotenuse of a right-angled triangle perpendiculars are drawn to the two sides, the rectangle contained by the segments of the hypotenuse will be equal to the sum of the rectangles contained by the segments of the sides.
12. D is a point in the side $A C$ of the triangle $A B C$, and E is a point in $A B$. If $B D, C E$ divide each other into parts in the ratio $4: 1$, then D, E divide CA, BA in the ratio $3: 1$.
13. If the perpendiculars from two fixed points on a straight line passing between them be in a given ratio, the straight line must pass through a third fixed point.
14. PA, PB are two tangents to a circle; PCD any chord through P : shew that the rectangle contained by one pair of opposite sides of the quadrilateral $A C B D$ is equal to the rectangle contained by the other pair.
15. A, B, C are any three points on a circle, and the tangent at A meets $B C$ produced in D : shew that the diameters of the circles circumscribed about $A B D, A C D$ are as $A D$ to $C D$.
16. $A B, C D$ are two diameters of the circle $A D B C$ at right angles to each other, and $E F$ is any chord; $C E, C F$ are drawn meeting $A B$ produced in G and H; prove that

$$
\text { the rect. } \mathrm{CE}, \mathrm{HG}=\text { the rect. } \mathrm{EF}, \mathrm{CH} \text {. }
$$

17. From the vertex A of any triangle $A B C$ draw a line meeting $B C$ produced in D so that $A D$ may be a mean proportional between the segments of the base.
18. Two circles touch internally at O; $A B$ a chord of the larger circle touches the smaller in C which is cut by the lines $O A, O B$ in the points P, Q : shew that $O P: O Q:: A C: C B$.
19. $A B$ is any chord of a circle; $A C, B C$ are drawn to any point C in the circumference and meet the diameter perpendicular to $A B$ at D, E : if O is the centre, shew that the rect. $O D, O E$ is equal to the square on the radius.
20. $Y D$ is a tangent to a circle drawn from a point Y in the diameter $A B$ produced; from D a perpendicular $D X$ is drawn to the diameter ; shew that the points X, Y divide $A B$ internally and externally in the same ratio.
21. Determine a point in the circumference of a circle, from which lines drawn to two other given points shall have a given ratio.
22. O is the centre and OA a radius of a given circle, and V is a fixed point in $O A ; P$ and Q are two points on the circumference on opposite sides of A and equidistant from it; $Q V$ is produced to meet the circle in L ; shew that, whatever be the length of the arc PQ, the chord LP will always meet OA produced in a fixed point.
23. EA, EA' are diameters of two circles touching each other externally at E; a chord $A B$ of the former circle, when produced, touches the latter at C^{\prime}, while a chord $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ of the latter touches the former at C : prove that the rectangle, contained by $A B$ and $A^{\prime} B^{\prime}$, is four times as great as that contained by B^{\prime} and $B^{\prime} C$.
24. If a circle be described touching externally two given circles, the straight line passing through the points of contact will intersect the line of centres of the given circles at a fixed point.
25. Two circles touch externally in C; if any point D be taken without them so that the radii $A C, B C$ subtend equal angles at D, and DE, DF be tangents to the circles, shew that DC is a mean proportional between DE and DF.
26. If through the middle point of the base of a triangle any line be drawn intersecting one side of the triangle, the other produced, and the line drawn parallel to the base from the vertex, it will be divided harmonically.
27. If from either base angle of a triangle a line be drawn intersecting the median from the vertex, the opposite side, and the line drawn parallel to the base from the vertex, it will be divided harmonically.
28. Any straight line drawn to cut the arms of an angle and its internal and external bisectors is cut harmonically.
29. P, Q are harmonic conjugates of A and B, and C is an external point; if the angle PCQ is a right angle, shew that $C P, C Q$ are the internal and external bisectors of the angle ACB.
30. From \mathbf{C}, one of the base angles of a triangle, draw a straight line meeting $A B$ in G, and a straight line through A parallel to the base in E, so that CE may be to $E G$ in a given ratio.
31. P is a given point outside the angle formed by two given lines $A B, A C$; shew how to draw a straight line from P such that the parts of it intercepted between P and the lines $A B, A C$ may have a given ratio.
32. Through a given point within a given circle, draw a straight line such that the parts of it intercepted between that point and the circumference may have a given ratio. How many solutions does the problem admit of?
33. If a common tangent be drawn to any number of circles which touch each other internally, and from any point of this tangent as a centre a circle be described, cutting the other circles; and if from this centre lines be drawn through the intersections of the circles, the segments of the lines within each circle shall be equal.
34. $A P B$ is a quadrant of a circle, SPT a line touching it at P; C is the centre, and $P M$ is perpendicular to $C A$; prove that the $\triangle S C T$: the $\triangle A C B$: : the $\triangle A C B$: the $\triangle C M P$.
35. $A B C$ is a triangle inscribed in a circle, $A D, A E$ are lines drawn to the base $B C$ parallel to the tangents at B, C respectively; shew that $A D=A E$, and $B D: C E:: A B^{2}: A C^{2}$.
36. $A B$ is the diameter of a circle, E the middle point of the radius $O B$; on $A E, E B$ as diameters circles are described; PQL is a common tangent touching the circles at P and Q, and $A B$ produced at L : shew that $B L$ is equal to the radius of the smaller circle.
37. The vertical angle C of a triangle is bisected by a straight line which meets the base at D, and is produced to a point E, such that the rectangle contained by $C D$ and $C E$ is equal to the rectangle contained by $A C$ and $C B$: shew that if the base and vertical angle be given, the position of E is invariable.
38. $A B C$ is an isosceles triangle having the base angles at \mathbf{B} and C each double of the vertical angle : if $B E$ and $C D$ bisect the base angles and meet the opposite sides in E and D, shew that $D E$ divides the triangle into figures whose ratio is equal to that of $A B$ to $B C$.
39. If $A B$, the diameter of a semicircle, be bisected in C, and on $A C$ and $C B$ circles be described, and in the space between the three circumferences a circle be inscribed, shew that its diameter will be to that of the equal circles in the ratio of 2 to 3 .
40. O is the centre of a circle inscribed in a quadrilateral $A B C D$: a line EOF is drawn and making equal angles with $A D$ and $B C$, and meeting them in E and F respectively: shew that the triangles AEO, BOF are similar, and that

$$
A E: E D=C F: F B .
$$

41. From the last exercise deduce the following: The inscribed circle of a triangle $A B C$ touches $A B$ in F; $X O Y$ is drawn through the centre making equal angles with $A B$ and $A C$, and meeting them in X and Y respectively : shew that $B X: X F=A Y: Y C$.
42. Inscribe a square in a given semicircle.
43. Inscribe a square in a given segment of a circle.
44. Describe an equilateral triangle equal to a given isosceles triangle.
45. Describe a square having given the difference between a diagonal and a side.
46. Given the vertical angle, the ratio of the sides containing it, and the diameter of the circumscribing circle, construct the triangle.
47. Given the vertical angle, the line bisecting the base, and the angle the bisector makes with the base, construct the triangle.
48. In a given circle inscribe a triangle so that two sides may pass through two given points and the third side be parallel to a given straight line.
49. In a given circle inscribe a triangle so that the sides may pass through the three given points.
50. $\mathrm{A}, \mathrm{B}, \mathrm{X}, \mathrm{Y}$ are four points in a straight line, and O is such a point in it that the rectangle $O A, O Y$ is equal to the rectangle $O B, O X$; if a circle is described with centre O and radius equal to a mean proportional between OA and OY, shew that at every point on this circle $A B$ and $X Y$ will subtend equal angles.
51. O is a fixed point, and $O P$ is any line drawn to meet a fixed straight line in P; if on $O P$ a point Q is taken so that $O Q$ to $O P$ is a constant ratio, find the locus of Q.
52. O is a fixed point, and OP is any line drawn to meet the circumference of a fixed circle in P; if on $O P$ a point Q is taken so that $O Q$ to $O P$ is a constant ratio, find the locus of Q.
53. If from a given point two straight lines are drawn including a given angle, and having a fixed ratio, find the locus of the extremity of one of them when the extremity of the other lies on a fixed straight line.
54. On a straight line $P A B$, two points A and B are marked and the line $P A B$ is made to revolve round the fixed extremity $P . C$ is a fixed point in the plane in which PAB revolves; prove that if CA and CB be joined and the parallelogram CADB be completed, the locus of D will be a circle.
55. Find the locus of a point whose distances from two fixed points are in a given ratio.

5b. Find the locus of a point from which two given circles subtend the same angle.
57. Find the locus of a point such that its distances from two intersecting straight lines are in a given ratio.
58. In the figure on page 389 , shew that $\mathrm{QT}, \mathrm{P}^{\prime} \mathrm{T}^{\prime}$ meet on the radical axis of the two circles.
59. $A B C$ is any triangle, and on its sides equilateral triangles are described externally: if X, Y, Z are the centres of their inscribed circles, shew that the triangle XYZ is equilateral.
60. If S, I are the centres, and R, r the radii of the circumscribed and inscribed circles of a triangle, and if N is the centre of its nine-points circle,

$$
\begin{array}{ll}
\text { prove that } & \text { (i) } \mathrm{SI}^{2}=\mathrm{R}^{2}-2 \mathrm{R} r, \\
& \text { (ii) } \mathrm{NI}=\frac{1}{2} \mathrm{R}-r .
\end{array}
$$

Establish corresponding properties for the escribed circles, and hence prove that the nine-points circle touches the inscribed and escribed circles of a triangle.

SOLID GEOMETRY.

EUCLID. BOOK XI.

Definitions.

From the Definitions of Book I. it will be remembered that
(i) A line is that which has length, without breadth or thickness.
(ii) A surface is that which has length and breadth, without thickness.

To these definitions we have now to add :
(iii) Space is that which has length, breadth, and thickness.

Thus a line is said to be of one dimension :
a surface is said to be of two dimensions;
and space is said to be of three dimensions.
The Propositions of Euclid's Eleventh Book here given establish the first principles of the geometry of space, or solid geometry. They deal with the properties of straight lines which are not all in the same plane, the relations which straight lines bear to planes which do not contain those lines, and the relations which two or more planes bear to one another. Unless the contrary is stated the straight lines are supposed to be of indefinite length, and the planes of infinite extent.

Solid geometry then proceeds to discuss the properties of solid figures, of surfaces which are not planes, and of lines which cannot be drawn on a plane surface.

Lines and Planes.

1. A straight line is perpendicular to a plane when it is perpendicular to every straight line which meets it in that plane.

Note. It will be proved in Proposition 4 that if a straight line is perpendicular to two straight lines which meet it in a plane, it is also perpendicular to every straight line which meets it in that plane.

A straight line drawn perpendicular to a plane is said to be a normal to that plane.
2. The foot of the perpendicular let fall from a given point on a plane is called the projection of that point on the plane.
3. The projection of a line on a plane is the locus of the feet of perpendiculars drawn from all points in the given line to the plane.

Thus in the above figure the line $a b$ is the projection of the line $A B$ on the plane PQ.

Note. It will be proved hereafter (see page 446) that the projection of a straight line on a plane is also a straight line.
4. The inclination of a straight line to a plane is the acute angle contained by that line and another drawn from the point at which the first line meets the plane to the point at which a perpendicular to the plane let fall from any point of the first line meets the plane.

Thus in the above figure, if from any point X in the given straight line $A B$, which intersects the plane $P Q$ at A, a perpendicular $X x$ is let fall on the plane, and the straight line $A x b$ is drawn from A through x, then the inclination of the straight line AB to the plane PQ is measured by the acute angle BAb. In other words :-

The inciination of a straight line to a plane is the acute angle contained by the given straight line and its projection on the plane.

Axion. If two surfaces intersect one another, they meet in a line or lines.
5. The common section of two intersecting surfaces is the line (or lines) in which they meet.

Note. It is proved in Proposition 3 that the common section of two planes is a straight line.

Thus $A B$, the common section of the two planes $P Q, X Y$ is proved to be a straight line.
6. One plane is perpendicular to another plane when any straight line drawn in one of the planes perpendicular to the common section is also perpendicular to the other plane.

Thus in the above figure, the plane $E B$ is perpendicular to the plane CD, if any straight line $P Q$, drawn in the plane $E B$ at right angles to the common section $A B$, is also at right angles to the plane CD.
7. The inclination of a plane to a plane is the acute angle contained by two straight lines drawn from any point in the common section at right angles to it, one in one plane and one in the other.

Thus in the adjoining figure, the straight line $A B$ is the common section of the two intersecting planes $B C, A D$; and from \mathcal{Q}, any point in $A B$, two straight lines QP, QR are drawn perpendicular to $A B$, one in each plane: then the inclination of the two planes is measured by the acute angle $P Q R$.

Note. This definition assumes that the angle PQR is of constant magnitude whatever point Q is taken in $A B$: the truth of which assumption is proved in Proposition 10.

The angle formed by the intersection of two planes is called a dihedral angle.

It may be proved that two planes are perpendicular to one another when the dihedral angle formed by them is a right angle.
8. Parallel planes are such as do not mect when produced.
9. A straight line is parallel to a plane if it does not meet the plane when produced.
10. The angle between two straight lines which do not meet is the angle contained by two intersecting straight lines respectively parallel to the two non-intersecting lines.

Thus if $A B$ and $C D$ are two straight lines which do not meet, and $a b, b c$ are two intersecting lines parallel respectively to $A B$ and $C D$; then the angle between $A B$ and $C D$ is measured by the angle $a b c$.

11. A solid angle is that which is made by three or more plane angles which have a common vertex, but are not in the same plane.

A solid angle made by three plane angles is said to be trihedral; if made by more than three, it is said to be polyhedral.

A solid angle is sometimes called a corner.

12. A solid figure is any portion of space bounded by one or more surfaces, plane or curved.

These surfaces are called the faces of the solid, and the intersections of adjacent faces are called edges.

Polyhedra.

13. A polyhedron is a solid figure bounded by plane faces.

Note. A plane rectilineal figure must at least have three sides; or four, if two of the sides are parallel. A polyhedron must at least have four faces; or, if two faces are parallel, it must at least have five faces.
14. A prism is a solid figure bounded by plane faces, of which two that are opposite are similar and equal polygons in parallel planes, and the other faces are paral. lelograms.

The polygons are called the ends of the prism. A prism is said to be right if the edges formed by each pair of adjacent parallelograms are perpendicular to the two ends ; if otherwise the prism is oblique.
15. A parallelepiped is a solid figure bounded by three pairs of parallel plane faces.

Fig. I.

Fig. 2.

A parallelepiped may be rectangular as in fig. 1, or oblique as in fig. 2. The name cuboid is sometimes given to a rectangular paral. lelepiped whose length, breadth, and thickness are not all equal.
16. A pyramid is a solid figure bounded by plane faces, of which one is a polygon, and the rest are triangles having as bases the sides of the polygon, and as a common vertex some point not in the plane of the polygon.

The polygon is called the base of the pyramid.
A pyramid having for its base a regular polygon is said to be right when the vertex lies in the straight line drawn perpendicular to the base from its central point (the centre of its inscribed or circumscribed circle).
17. A tetrahedron is a pyramid on a triangular base: it is thus contained by four triangular faces.

18. Polyhedra are classified according to the number of their faces:
thus a hexahedron has six faces ;
an octahedron has eight faces;
a dodecahedron has twelve faces.
19. Similar polyhedra are such as have all their solid angles equal, each to each, and are bounded by the same number of similar faces.
20. A polyhedron is regular when its faces are similar and equal regular polygons.
H.S к 2 I
21. It will be proved (see page 451) that there can only be five regular polyhedra.

They are defined as follows:-
(i) A regular tetrahedron is a solid figure bounded by four plane faces, which are equal and equilateral triangles.
(ii) A cube is a solid figure bounded by six plane faces, which are equal squares.

(iii) A regular octahedron is a solid figure bounded by eight plane faces, which are equal and equilateral triangles.
(iv) A regular dodecahedron is a solid figure bounded by twelve plane faces, which are equal and regular pentagons.

(v) A regular icosahedron is a solid figure bounded by twenty plane faces, which are equal and equilateral triangles.

Solids of Revolution.

22a. A sphere is a solid figure described by the revolution of a semicircle about its diameter, which remains fixed.

The axis of the sphere is the fixed straight line about which the semicircle revolves.

The centre of the sphere is the same as the centre of the semicircle.

A diameter of a sphere is any straight line which passes through the centre, and is terminated both ways by the surface of the sphere.

The following definition of a sphere, analogous to that given for a circle (I. Def. 15), may also be noted:

22b. A sphere is a solid figure contained by one surface, which is such that all straight lines drawn from a certain point within it to the surface are equal : this point is called the centre of the sphere.

A radius of a sphere is a straight line drawn from the centre to the surface.

It will be seen that the surface of a sphere is the locus of a point which moves in space so that its distance from a certain fixed point (the centre) is constant.
23. A right cylinder is a solid figure described by the revolution of a rectangle about one of its sides which remains fixed.

The axis of the cylinder is the fixed straight line about which the rectangle revolves.

The bases, or ends, of the cylinder are the circular faces described by the two revolving opposite sides of the rectangle.
24. A right cone is a solid figure described by the revolution of a rightangled triangle about one of the sides containing the right angle which remains fixed.

The axis of the cone is the fixed straight line about which the triangle revolves.

The base of the cone is the circular face described by that side which revolves.

The hypotenuse of the right-angled triangle in any one of its positions is called a generating line of the cone.
25. Similar cones and cylinders are those which have their axes and the diameters of their bases proportionais.

Proposition 1. Theorem.

One part of a straight line cannot be in a plane and another part outside it.

If possible, let $A B$, part of the st. line $A B C$, be in the plane $P Q$, and the part $B C$ outside it.

Then since the st. line $A B$ is in the plane $P Q$,
\therefore it can be produced in that plane. I. Post. 2.

Produce AB to D;

and let any other plane which passes through AD be turned about AD until it passes also through C .

Then because the points B and C are in this plane,

$$
\therefore \text { the st. line BC is in it: I. Def. } 7 \text {. }
$$

$\therefore A B C$ and $A B D$ are in the same plane and are both st. lines ; which is impossible.
I. Def. 4.
\therefore the st. line $A B C$ has not one part $A B$ in the plane $P Q$, and another part BC outside it.
Q.E.D.

Note. This proposition scarcely needs proof, for the truth of it follows immediately from the definitions of a straight line and a plane.

It should be observed that the method of proof used in this and the next proposition rests upon the following axiom :

If a plane of unlimited extent turns about a fixed straight line as an axis, it can be made to pass through any point in space.

Proposition 2. Theorem.

Any two intersecting straight lines are in one plane: and any three straight lines, of which each pair intersect one another, are in one plane.

Let the two st. lines $A B$ and $C D$ intersect at E; and let the st. line $B C$ be drawn cutting $A B$ and $C D$ at B and C .

Then (i) AB and CD shall lie in one plane.
(ii) $A B, B C, C D$ shall lie in one plane.
(i) Let any plane pass through $A B$;
and let this plane be turned about $A B$ until it passes through C .

Then, since C and E are points in this plane,
\therefore the whole st. line CED is in it. I. Def. 7 and XI. 1. That is, $A B$ and $C D$ lie in one plane.
(ii) And since B and C are points in the plane which contains $A B$ and $C D$,
\therefore also the st. line $B C$ lies in this plane. Q.E.D.
Corollary. One, and only one, plane can be made to pass through two given intersecting straight lines.

Hence the position of a plane is fixed,
(i) if it passes through a given straight line and a given point outside it ; $A x$. p. 419.
(ii) if it passes through two intersecting straight lines; XI. 2.
(iii) if it passes through three points not collinear ;
xI. 2.
(iv) if it passes through two parallel straight lines.
I. Def. 35.

Proposition 3. Theorem.

If two planes cut one another, their common section is a straight line.

Let the two planes $X A, C Y$ cut one another, and let $B D$ be their common section.

Then shall BD be a straight line.
For if not, from B to D in the plane XA draw the st. line BED ;
and in the plane CY draw the st. line BFD.
Then the st. lines BED, BFD have the same extremities ;
\therefore they include a space ; but this is impossible.
$A x .10$.
\therefore the common section $B D$ cannot be otherwise than a st. line.

Alternative Proof.

Let the planes $X A, C Y$ cut one another, and let B and D be two points in their common section.
Then because B and D are two points in the plane $X A$, \therefore the st line joining B, D lies in that plane. I. Def. 7.
And because B and D are two points in the plane CY,
\therefore the st. line joining B, D lies in that plane.
Hence the st. line BD lies in both planes, and is therefore their common section.
That is, the common section of the two planes is a straight line.
Q.E.D.

Proposition 4. Theorem. [Alternative Proof.]

If a struight line is perpendicular to each of two straight lines at their point of intersection, it shall also ve perpendicular to the plane in which they lie.

Let the straight line AD be perp. to each of the st. lines $A B, A C$ at A their point of intersection.

Then shall $A D$ be perp. to the plane in which AB and AC lie.
Produce DA to F, making $A F$ equal to DA.
Draw any st. line $B C$ in the plane of $A B, A C$, to cut $A B, A C$ at B and C;
and in the same plane draw through A any st. line $A E$ to cut $B C$ at E.

It is required to prove that AD is perp. to AE. XI. Def. 1. Join DB, DE, DC ; and FB, FE, FC.

$$
\text { Then in the } \triangle^{8} B A D, B A F \text {, }
$$ because $D A=F A$,

and the common side $A B$ is perp. to $D A, F A$;

$$
\therefore B D=B F .
$$

I. 4 .

Similarly $C D=C F$.
Now if the \triangle BFC be turned about its base BC until the vertex F comes into the plane of the $\triangle B D C$, then F will coincide with D,
since the conterminous sides of the triangles are equal. I. 7
\therefore EF will coincide with ED, that is, $E F=E D$.

Hence in the \triangle° DAE, FAE, since $D A, A E, E D=F A, A E, E F$ respectively,

$$
\therefore \text { the }-\mathrm{DAE}=\text { the } \angle \mathrm{FAE} .
$$

That is, DA is perp. to AE.
Similarly it may be shewn that $D A$ is perp. to every st. line which meets it in the plane of $A B, A C$;
\therefore DA is perp. to this plane. Q.E.D.

Proposition 4. Theorem. [Euclid's Proof.]
If a straight line is perpendicular to each of two straight lines at their point of intersection, it shall also be perpendicular to the plane in which they lie.

Let the st. line EF be perp. to each of the st. lines $A B, D C$ at E their point of intersection.
Then shall EF be also perp, to the plane XY , in which AB and DC lie.
Make EA, EC, EB, ED all equal, and join AD, BC.
Through E in the plane XY draw any st. line cutting $A D$ and $B C$ in G and H.

Take any pt. F in EF; and join FA, FG, FD, FB, FH, FC. Then in the $\triangle^{8} A E D, B E C$,
because $A E, E D=B E$, $E C$ respectively, and the $\angle A E D=$ the $\angle B E C$;

Constr.
I. 15.
$\therefore A D=B C$, and the $\angle D A E=$ the $\angle C B E$.
I. 4.

In the $\triangle^{s} A E G, B E H$, because the $\angle \mathrm{GAE}=$ the $\angle \mathrm{HBE}$,

$$
\begin{gathered}
\text { and the } \angle A E G=\text { the } \angle B E H, \\
\text { and } E A=E B ;
\end{gathered}
$$

$$
\therefore E G=E H \text {, and } A G=B H . \quad \text { I. } 26 \text {. }
$$

Again in the \triangle° FEA, FEB,
because $E A=E B$,
and the common side FE is perp. to EA, EB ; Hyp.

$$
\therefore F A=F B .
$$

I. 4.

Similarly FC=FD,
Again in the \triangle^{8} DAF, CBF,
because $\mathrm{DA}, \mathrm{AF}, \mathrm{FD}=\mathrm{CB}, \mathrm{BF}, \mathrm{FC}$, respectively,

$$
\begin{array}{rlr}
\therefore \text { the } \angle D A F & =\text { the } \angle C B F . & \text { I. } 8 . \\
\text { And in the } \triangle \text {. } F A G, F B H, & \\
\text { because } F A, A G & =F B, B H, \text { respectively, } & \\
\text { and the } \angle F A G & =\text { the } \angle F B H, & \text { Proved. } \\
\therefore F G & =F H . & \text { I. } 4 .
\end{array}
$$

Lastly in the \triangle^{8} FEG, FEH, because $\mathrm{FE}, \mathrm{EG}, \mathrm{GF}=\mathrm{FE}, \mathrm{EH}, \mathrm{HF}$, respectively,

$$
\therefore \text { the } \angle \mathrm{FEG}=\text { the } \angle \mathrm{FEH} \text {; }
$$

that is, $F E$ is perp. to GH .
Similarly it may be shewn that FE is perp. to every st. line which meets it in the plane $X Y$,
\therefore FE is perp. to this plane. XI. Def. 1.

Proposition 5. Theorem.

If a straight line is perpendicular to each of three concurrent straight lines at their point of intersection, these three straight lines shall be in one plane.

Let the straight line $A B$ be perpendicular to each of the straight lines $B C, B D, B E$, at B their point of intersection.

Then shall $\mathrm{BC}, \mathrm{BD}, \mathrm{BE}$ be in one plane.
Let $X Y$ be the plane which passes through $B E, B D$; XI. 2 . and, if possible, suppose that $B C$ is not in this plane.
Let $A F$ be the plane which passes through $A B, B C$; and let the common section of the two planes XY, AF be the st. line BF. xI. 3 .

Then since $A B$ is perp. to $B E$ and $B D$,
$\therefore A B$ is perp. to the plane containing $B E, B D$, namely the plane $X Y$;
XI. 4.
and since $B F$ is in this plane,
$\therefore A B$ is also perp. to $B F$.
But $A B$ is perp. to $B C$;
Нур.
\therefore the $\angle^{8} \mathrm{ABF}, \mathrm{ABC}$, which are in the same plane $A F$, are both rt. angles ; which is impossible.
$\therefore B C$ is not outside the plane of $B D, B E$: that is, $B C, B D, B E$ are in one plane.
Q.E.D.

Proposition 6. Theorem.

If two straight lines are perpendicular to the same plane, they shall be parallel to one another.

Let the st. lines $A B, C D$ be perp. to the plane $X Y$.
Then shall AB and CD be par?. ${ }^{\text {. }}$
Let $A B$ and $C D$ meet the plane $X Y$ at B and D.
Join BD ;
and in the plane $X Y$ draw $D E$ perp. to $B D$, making $D E$ equal to $A B$.

Join $B E, A E, A D$.
Then since $A B$ is perp. to the plane $X Y$;
Hyp. $\therefore A B$ is also perp. to $B D$ and $B E$, which meet it in that plane;
xi. Def. 1 .
that is, the $\angle^{s} A B D, A B E$ are rt. angles.
Similarly the $\angle^{s} C D B, C D E$ are rt. angles.
Now in the $\triangle^{s} A B D, E D B$,
because $\mathrm{AB}, \mathrm{BD}=\mathrm{ED}, \mathrm{DB}$, respectively, Constr. and the $\angle A B D=$ the $\angle E D B$, being rt. angles ;

$$
\therefore A D=E B .
$$

I. 4.

Again in the $\triangle^{s} A B E, E D A$,
because $A B, B E=E D, D A$, respectively, and $A E$ is common;
\therefore the $\angle A B E=$ the $\angle E D A$.
I. 8 .

* Note. In order to shew that $A B$ and $C D$ are parallel, it is necessary to prove that (i) they are in the same plane, (ii) the angles ABD, CDB, are supplementary.

But the - EDB is a rt. angle by construction, and the - EDC is a rt. angle, since $C D$ is perp. to the plane XY.

Hence ED is perp. to the three lines DA, DB, and DC ;
\therefore DA, DB, DC are in one plane. XI. 5. But $A B$ is in the plane which contains DA, DB ; XI. 2. $\therefore A B, B D, D C$ are in one plane.
And each of the $-{ }^{8} \mathrm{ABD}, \mathrm{CDB}$ is a rt. angle ; IIyp.
$\therefore A B$ and $C D$ are par ${ }^{1}$. J. 28 .
Q.E.D.

Proposition 7. Theorem.

If two straight lines are parallel, the straight line which joins any point in one to any point in the other is in the same plane as the parallels.

Let $A B$ and $C D$ be two par ${ }^{1}$ st. lines, and let E, F be any two points, one in each st. line.
Then shall the st. line wich joins E, F be in the same plane as AB, CD.

For since $A B$ and $C D$ are par ${ }^{1}$,
\therefore they are in one plane.

1. Def. 35.

And since the points E and F are in this plane,
\therefore the st. line which joins them lies wholly in this plane.
I. Def. 7.

That is, EF is in the plane of the par ${ }^{18} A B, C D$.
Q E.D.

Proposition 8. Theorem.

If two stranght lines are parallel, and if one of them is perpendicular to a plane, then the other shall also be perpendicular to the same plane.

Let $A B, C D$ be two par ${ }^{1}$ st. lines, of which $A B$ is perp. to the plane $X Y$.

Then CD shall also be perp. to the same plane.
Let $A B$ and $C D$ meet the plane $X Y$ at the points B, D.
Join BD ;
and in the plane $X Y$ draw $D E$ perp. to $B D$, making $D E$ equal to $A B$.

> Join BE, AE, AD.

Then because $A B$ is perp. to the plane $X Y, \quad H y p$. $\therefore A B$ is also perp. to $B D$ and $B E$, which meet it in that plane;
that is, the $-{ }^{s} \mathrm{ABD}, \mathrm{ABE}$ are rt. angles.
Now in the $\triangle^{8} A B D, E D B$,
because $A B, B D=E D, D B$, respectively, Constr. and the $-A B D=$ the $-E D B$, being rt. angles ; $\therefore A D=E B$.
I. 4.

Again in the $\triangle^{8} A B E, E D A$,
because $A B, B E=E D, D A$, respectively, and $A E$ is common ;
\therefore the $\angle A B E=$ the $\angle E D A$.
I. 8 .

But the $\angle A B E$ is a rt. angle ; Proved.
\therefore the $\angle E D A$ is a rt. angle : that is, ED is perp. to DA.
But ED is also perp. to DB :
Constr:
$\therefore E D$ is perp. to the plane containing DB, DA. XI. 4. And DC is in this plane;
for both $D B$ and $D A$ are in the plane of the par ${ }^{18} A B, C D$.
XI. 7.
\therefore ED is also perp. to DC ;
xi. Def. 1 . that is, the $\angle C D E$ is a rt. angle. Again since $A B$ and $C D$ are par ${ }^{1}$,
$\therefore C D$ is perp. both to $D B$ and $D E$;
$\therefore C D$ is also perp. to the plane $X Y$, which contains

> DB, DE.
XI. 4.

EXERCISES.

1. The perpendicular is the least straight line that can be drawn from an external point to a plane.
2. Equal straight lines drawn from an external point to a plane are equally inclined to the perpendicular drawn from that point to the plane.
3. Shew that two observations with a spirit-level are sufficient to determine if a plane is horizontal: and prove that for this purpose the two positions of the level must not be parallel.
4. What is the locus of points in space which are equidistant from two fixed points?
5. Shew how to determine in a given straight line the point which is equidistant from two fixed points. When is this impossible?
6. If a straight line is parallel to a plane, shew that any plane passing through the given straight line will have with the given plane a common section which is parallel to the given straight line.

Proposition 9. Theorem.

I'wo straight lines which are parallel to a third straight line are parallel to one another.

Let the st. lines $A B, C D$ be each par ${ }^{1}$ to the st. line $P Q$. Then shall AB be par to CD .
CASE I. If $A B, C D$ and $P Q$ are in one plane, the proposition has already been proved.
I. 30 .

CASE II. But if $A B, C D$ and $P Q$ are not in one plane,
in $P Q$ take any point G;
and from G, in the plane of the par ${ }^{18} A B, P Q$, draw $G H$ perp. to PQ ;
I. 11. also from G, in the plane of the par ${ }^{18} C D, P Q$, draw $G K$ perp. to PQ.
I. 11.

Then because PQ is perp. to GH and GK, Consti.
$\therefore P Q$ is perp, to the plane HGK, which contains them.
But $A B$ is par to $P Q$;
XI. 4.
$\therefore A B$ is also perp. to the plane HGK. XI. 8 . Similarly, CD is perp. to the plane HGK.

Hence $A B$ and $C D$, being perp. to the same plane, are pat to one another.

Proposition 10. Theorem.

If two intersecting struight lines are respectively purallel to turo other intersecting straight lines not in the sume plane with them, then the first pair and the second puir shall contuin equal angles.

Let the st. lines $A B, B C$ be respectively par to the st, lines $D E, E F$, which are not in the same plane with them.

Then shall the $\angle A B C=$ the $\angle D E F$.
In $B A$ and $E D$, make $B A$ equal to $E D$; and in $B C$ and $E F$, make $B C$ equal to $E F$. Join AD, BE, CF, AC, DF.

Then because BA is equal and par to ED, Hyp. and Constr.
$\therefore A D$ is equal and par ${ }^{1}$ to $B E$.
I. 33.

And because $B C$ is equal and par to $E F$,
$\therefore C F$ is equal and par ${ }^{1}$ to $B E$.
I. 33.

Hence $A D$ and $C F$, being each equal and par to $B E$, are equal and par to one another ; $A x .1$ and XI. 9.
hence it follows that AC is equal and par to DF. I. 33 .
Then in the $\triangle^{s} A B C, D E F$,
because $A B, B C, A C=D E, E F, D F$, respectively,

$$
\therefore \text { the } \angle A B C=\text { the } \angle D E F \text {. }
$$

I. 8 .
Q.E.D.
H.S.E.

Proposition 11. Problem.

To draw a straight line perpendicular to a given plane from a given point outside it.

Let A be the given point outside the plane $X Y$.
It is required to draw from $\mathbf{A} a$ st. line perp. to the plane $X Y$.
Draw any st. line $B C$ in the plane $X Y$; and from A draw $A D$ perp. to $B C$.
I. 12.

Then if $A D$ is also perp. to the plane $X Y$, what was required is done.

But if not, from D draw $D E$ in the plane $X Y$ perp. to BC ;
and from A draw AF perp. to DE.
I. 11.
I. 12.

Then AF shall be perp. to the plane XY.
Through F draw FH par to BC .
I. 31.

Now because CD is perp. to $D A$ and $D E$,
Constr.
$\therefore C D$ is perp. to the plane containing DA, DE. XI. 4. And $H F$ is par to CD;
$\therefore H F$ is also perp. to the plane containing DA, DE. XI. 8 .
And since FA meets HF in this plane,
\therefore the \angle HFA is a rt. angle ; xi. Def. 1. that is, AF is perp. to FH .
And AF is also perp. to DE;
$\therefore A F$ is perp. to the plane containing $F H, D E$;
that is, AF is perp. to the plane XY. Q.E.F.

Proposition 12. Problem.

To draw a straight line perpendicular to a given plane from a given point in the plane.

Let A be the given point in the plane XY .
It is required to draw from A a st. line perp. to the plane XY .
From any point B outside the plane XY draw BC perp. to the plane.
XI. 11 .

Then if $B C$ passes through A, what was required is done.

But if not, from A draw $A D$ par 1 to $B C$. I. 31 .

Then AD shall be the perpendicular required. For since $B C$ is perp. to the plane $X Y$, and since $A D$ is par to $B C$,
$\therefore A D$ is also perp. to the plane $X Y$.

EXERCISES.

1. Equal straight lines drawn to meet a plane from a point without it are equally inclined to the plane.
2. Find the locus of the foot of the perpendicular drawn from a given point upon any plane which passes through a given straight line.
3. From a given point A a perpendicular AF is drawn to a plane $X Y$; and from $F, F D$ is drawn perpendicular to $B C$, any line in that plane : shew that $A D$ is also perpendicular to $B C$.

Proposition 13. Theorem.
Only one perpendicular can be drawn to a given plane from a given point either in the plane or outside it.

Case I. Let the given point A be in the given plane $X Y$; and, if possible, let two perps. $A B, A C$ be drawn from A to the plane $X Y$.

Let DF be the plane which contains $A B$ and $A C$; and let the st. line DE be the common section of the planes DF and XY .

Then the st. lines $A B, A C, A E$ are in one plane.
And because BA is perp. to the plane $X Y$,
$\therefore B A$ is also perp. to $A E$, which meets it in this plane;

$$
\text { xi. Def. } 1 .
$$

$$
\text { that is, the } \angle B A E \text { is a rt. angle. }
$$

Similarly, the - CAE is a rt. angle.
\therefore the \angle^{s} BAE, CAE, which are in the same plane, are equal to one another ; which is impossible.
\therefore two perpendiculars cannot be drawn to the plane $X Y$ from the point A in that plane.

Case II. Let the given point A be outside the plane XY.
Then two pert cannot be drawn from A to the plane;
for if there could be two, they would be par², XI. 6 . which is absurd.
Q.E.D.

Proposition 14. Theorem.

Ilanes to which the same straight line is perpendicular are parallel to one another.

Let the st. line $A B$ be perp. to each of the planes $C D, E F$. Then shall the planes CD, EF be par.
For if not, they will meet when produced.
If possible, let the two planes meet, and let the st. line GH be their common section.

> In GH take any point K; and join AK, BK.

Then because $A B$ is perp. to the plane $E F$,
$\therefore A B$ is also perp. to $B K$, which meets it in this plane ; xi. Def. 1.
that is, the $\angle A B K$ is a rt. angle.
Similarly, the $\angle B A K$ is a rt. angle.
\therefore in the $\triangle K A B$, the two $\left\llcorner^{s} A B K, B A K\right.$ are together equal to two rt. angles; which is impossible.
I. 17.
\therefore the planes CD, EF, though produced, do not meet: that is, they are par ${ }^{1}$.
Q.E.D.

Proposition 15. Theorem.

If two intersecting straight lines are parallel respectively to two other intersecting straight lines which are not in the same plane with them, then the plane containing the first pair shall be parallel to the plane containing the second pair.

Let the st. lines $A B, B C$ be respectively $p r^{1}$ to the st. lines $D E, E F$, which are not in the same plane as $A B, B C$.

Then shall the plane containing AB, BC be par ${ }^{2}$ to the plane containing DE, EF.

From B draw BG perp. to the plane of DE, EF ; XI. 11. and let it meet that plane at G .
Through G draw GH, GK par ${ }^{1}$ respectively to DE, EF. I. 31.
Then because BG is perp. to the plane of $D E, E F$,
$\therefore B G$ is also perp. to GH and GK, which meet it in that plane:
xi. Def. 1 .
that is, each of the $\angle^{8} B G H, B G K$ is a rt. angle.
Now by hypothesis BA is par to ED, and by construction GH is par to ED;
\therefore BA is par' to GH.
XI. 9.

And since the $\angle B G H$ is a rt. angle ; Proved.
\therefore the $\angle A B G$ is a rt. angle.
I. 29.

Similarly the $\angle C B G$ is a rt. angle.

Then since BG is perp. to each of the st. lines BA, BC,
$B G$ is perp. to the plane containing them. XI. 4. But BG is also perp. to the plane of ED, EF ; Constr. that is, $B G$ is perp. to the two planes $A C, D F$;
\therefore these planes are par ${ }^{1}$.
XI. 14.
Q.E.D.

Proposition 16. Theorem.
If two parallel planes are cut by a third plane, their common sections with it shall be parallel.

Let the par ${ }^{1}$ planes $A B, C D$ be cut by the plane $E F H G$, and let the st. lines EF, GH be their common sections with it.

Then shall EF, GH be part.
For if not, EF and GH will meet if produced.
If possible, let them meet at K.
Then since the whole st. line EFK is in the plane AB, XI. 1. and K is a point in that line,
\therefore the point K is in the plane $A B$.
Similarly the point K is in the plane CD.
Hence the planes $A B, C D$ when produced meet at K; which is impossible, since they are parl.
\therefore the st. lines EF and GH do not meet;
and they are in the same plane EFHG;
\therefore they are par ${ }^{1}$.
I. Def. 35. Q.E.D.

Proposition 17. Theorem.

Straight lines which are cut by parallel planes are cut proportionally.

Let the st. lines AB, CD be cut by the three par planes $G H, K L, M N$ at the points A, E, B, and C, F, D.

Then shall $\mathrm{AE}: \mathrm{EB}:: \mathrm{CF}: \mathrm{FD}$.
Join $\mathrm{AC}, \mathrm{BD}, \mathrm{AD}$;
and let $A D$ meet the plane $K L$ at the point X : join EX, XF.
Then because the two par planes $K L, M N$ are cut by the plane $A B D$,
\therefore the common sections EX, BD are par'. XI. 16. And because the two par planes GH, KL are cut by the plane DAC,
\therefore the common sections $X F, A C$ are par'. XI. 16. Now since EX is par ${ }^{1}$ to $B D$, a side of the $\triangle A B D$,

$$
\therefore A E: E B:: A X: X D . \quad \text { vi. } 2 .
$$

$\begin{aligned} & \text { Again because } X F \text { is par }{ }^{1} \text { to } A C \text {, a side of the } \triangle D A C, \\ & \therefore A X: X D:: C F: F D . \text { VI. } 2 . \\ & \text { Hence } A E: E B:: C F: F D . \text { V. 1. }\end{aligned}$
Definition. One plane is perpendicular to another plane, when any straight line drawn in one of the planes perpendicular to their common section is also perpendicular to the other plane.
[Book xi. Def. 6.]

Proposition 18. Theorem.
If a straight line is perpendicular to a plane, then every plane which passes through the straight line is also perpendicular to the given plane.

Let the st. line $A B$ be perp. to the plane $X Y$; and let $D E$ be any plane passing through $A B$. Then shall the plane DE be perp. to the plane XY.
Let the st. line CE be the common section of the planes XY, DE.
XI. 3.

From F, any point in CE, draw $F G$ in the plane DE perp. to CE.
I. 11.

Then because AB is perp. to the plane XY, Hyp. $\therefore A B$ is also perp. to $C E$, which meets it in that plane, xi. Def. 1. that is, the $\angle A B F$ is a rt. angle. But the - GFB is also a rt. angle; Constr. \therefore GF is par to AB. I. 28. And AB is perp. to the plane XY , Hyp. \therefore GF is also perp. to the plane XY . XI. 8 .
Hence it has been shewn that any st. line GF drawn in the plane $D E$ perp. to the common section CE is also perp. to the plane XY .
\therefore the plane DE is perp. to the plane XY. xi. Def. 6 . Q.E.D.

EXERCISE。

Shew that two planes are perpendicular to one another when the dihedral angie [see xi. Def. 7] formed by them is a right angle.

Proposition 19. Theorem.

If two intersecting planes are each perpendicular to a third plane, their common section shall also be perpendicular to that plane.

Let each of the planes $A B, B C$ be perp. to the plane $A D C$, and let BD be their common section.

Then shall BD be perp. to the plane ADC.
For if not, from D draw in the plane $A B$ the st. line $D E$ perp. to $A D$, the common section of the planes ADB, ADC :
I. 11.
and from D draw in the plane $B C$ the st. line DF perp. to $D C$, the common section of the planes $B D C, A D C$.

Then because the plane BA is perp. to the plane ADC,
and $D E$ is drawn in the plane BA perp. to $A D$ the common section of these planes,

Constr.
\therefore DE is perp. to the plane ADC. xi. Def. 6 . Similarly DF is perp. to the plane ADC.
\therefore from the point D two st. lines are drawn perp. to the plane ADC ; which is impossible.
xi. 13.

Hence $D B$ cannot be otherwise than perp. to the plane ADC.
Q.E.D.

Proposition 20. Theorem.

Of the three plane angles which form a trihedral angle, any two are together greater than the third.

Let the trihedral angle at A be formed by the three plane $\angle^{8} B A D, D A C, B A C$.
Then shall any two of them, such as the $L^{8} \mathrm{BAD}, \mathrm{DAC}$, be together greater than the third, the $\angle B A C$.

Case I. If the $\angle B A C$ is less than, or equal to, either of the $\angle^{8} B A D, D A C$;
it is evident that the \angle^{8} BAD, DAC are together greater than the $\angle B A C$.

Case II. But if the $\angle B A C$ is greater than either of the L^{8} BAD, DAC ;
then at the point A in the plane $B A C$ make the $\angle B A E$ equal
to the $\angle B A D$; and cut off AE equal to AD.
Through E, and in the plane BAC, draw the st. line BEC cutting $A B, A C$ at B and C :
join DB, DC.
Then in the $\triangle^{s} B A D, B A E$,
since $B A, A D=B A, A E$, respectively, Constr. and the $\angle B A D=$ the $\angle B A E$;
$\therefore B D=B E$.
Constr.
I. 4 .

Again in the $\triangle B D C$, since $B D, D C$ are together greater than $B C$,
I. 20.

$$
\text { and } \mathrm{BD}=\mathrm{BE} \text {, }
$$

Proved.
$\therefore D C$ is greater than EC.

And in the \triangle^{8} DAC, EAC,
because $D A, A C=E A, A C$ respectively, Constr:
but DC is greater than EC; Proved.
\therefore the $\angle D A C$ is greater than the $\angle E A C$. I. 25 .
But the $\angle B A D=$ the $\angle B A E$;
Constr.
\therefore the two $\angle^{8} B A D, D A C$ are together greater than the $\angle B A C$.
Q.E.D.

Proposition 21. Theorem.

Every (convex) solid angle is formed by plane angles which are together less than four right angles.

Let the solid angle at S be formed by the plane $\angle^{s} A S B$, BSC, CSD, DSE, ESA.
Then shall the sum of these plane angles be less than four $r t$. angles.

For let a plane XY intersect all the arms of the plane angles on the same side of the vertex at the points A, B, C, D, E : and let $A B, B C, C D, D E, E A$ be the common sections of the plane $X Y$ with the planes of the several angles.

Within the polygon $A B C D E$ take any point O;
and join O to each of the vertices of the polygon.
Then since the - $S A E, S A B, E A B$ form the trihedral angle A,
\therefore the $-{ }^{3} S A E, S A B$ are together greater than the $\angle E A B$; XI. 20.
that is,
the - ${ }^{\text {s }} \mathrm{SAE}, \mathrm{SAB}$ are together greater than the $\angle^{8} O A E, O A B$.
Similarly,
the $-{ }^{\text {s }}$ SBA, SBC are together greater than the $\angle{ }^{\text {s }} \mathrm{OBA}, \mathrm{OBC}$: and so on, for each of the angular points of the polygon.

Thus by addition, the sum of the base angles of the triangles whose vertices are at S, is greater than the sum of the base angles of the triangles whose vertices are at 0 .
But these two systems of triangles are equal in number;
\therefore the sum of all the angles of the one system is equal to the sum of all the angles of the other.
It follows that the sum of the vertical angles at S is less than the sum of the vertical angles at O.

But the sum of the angles at O is four rt. angles ;
\therefore the sum of the angles at S is less than four rt. angles.
Q.E.D.

Note. This proposition was not given in this form by Euclid, who established its truth only in the case of trihedral angles. The above demonstration, however, applies to all cases in which the polygon $A B C D E$ is convex, but it must be observed that without this condition the proposition is not necessarily true.

A solid angle is convex when it lies entirely on one side of each of the infinite planes which pass through its plane angles. If this is the case, the polygon $A B C D E$ will have no re-entrant angle. And it is clear that it would not be possible to apply XI. 20 to a vertex at which a re-entrant angle existed.

Exercises on Book XI.

1. Equal straight lines drawn to a plane from a point without it have equal projections on that plane.
2. If S is the centre of the circle circumscribed about the triangle $A B C$, and if $S P$ is drawn perpendicular to the plane of the triangle, shew that any point in $S P$ is equidistant from the vertices of the triangle.
3. Find the locus of points in space equidistant from three given points.
4. From Example 2 deduce a practical method of drawing a perpendicular from a given point to a plane, having given ruler, compasses, and a straight rod longer than the required perpendicular.
5. Give a geometrical construction for drawing a straight line equally inclined to three straight lines which meet in a point, but are not in the same plane.
6. In a gauche quadrilateral (that is, a quadrilateral whose sides are not in the same plane) if the middle points of adjacent sides are joined, the figure thus formed is a parallelogram.
7. $A B$ and $A C$ are two straight lines intersecting at right angles, and from B a perpendicular $B D$ is drawn to the plane in which they are: shew that $A D$ is perpendicular to $A C$.
8. If two intersecting planes are cut by two parallel planes, the lines of section of the first pair with each of the second pair contain equal angles.
9. If a straight line is parallel to a plane, shew that any plane passing through the given straight line will intersect the given plane in a line of section which is parallel to the given line.
10. Two intersecting planes pass one through each of two parallel straight lines; shew that the common section of the planes is parallel to the given lines.
11. If a straight line is parallel to each of two intersecting planes, it is also parallel to the common section of the planes.
12. Through a given point in space draw a straight line to intersect each of two given straight lines which are not in the same plane.
13. If $A B, B C, C D$ are straight lines not all in one plane, shew that a plane which passes through the middle point of each one of them is parallel both to $A C$ and $B D$.
14. From a given point A a perpendicular $A B$ is drawn to a plane $X Y$; and a second perpendicular $A E$ is drawn to a straight line $C D$ in the plane $X Y$: shew that $E B$ is perpendicular to $C D$.
15. From a point A two perpendiculars $A P, A Q$ are drawn one to each of two intersecting planes: shew that the eommon section of these planes is perpendicular to the plane of AP, AQ.
16. From A, a point in one of two given intersecting planes, AP is drawn perpendicular to the first plane, and AQ perpendicular to the second: if these perpendiculars meet the second plane at P ant Q, shew that PQ is perpendicular to the common section of the two planes.
17. A, B, C, D are four points not in one plane, shew that the four angles of the gruche quadrilateral ABCD [see Ex. 6, p. 444] are together less than four right angles.
18. $O A, O B, O C$ are three straight lines drawn from a given point O not in the same plane, and $O X$ is another straight line within the solid angle formed by $O A, O B, O C$: shew that
(i) the sum of the angles $A O X, B O X, C O X$ is greater than half the sum of the angles $A O B, B O C, C O A$.
(ii) the sum of the angles $A O X, C O X$ is less than the sum of the angles $A O B, C O B$.
(iii) the sum of the angles $A O X, B O X, C O X$ is less than the sum of the angles $A O B, B O C, C O A$.
19. $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ are three straight lines forming a solid angle at O, and $O X$ bisects the plane angle $A O B$; shew that the angle $X O C$ is less than half the sum of the angles $A O C, B O C$.
20. If a point is equidistant from the angles of a right-angled triangle and not in the plane of the triangle, the line joining it with the middle point of the hypotenuse is perpendicular to the plane of the triangle.
21. The angle which a straight line makes with its projection on a plane is less than that which it makes with any other straight line which meets it in that plane.
22. Find a point in a given plane such that the sum of its distances from two given points (not in the plane but on the same side of it) may be a minimum.
23. If two straight lines in one plane are equally inclined to another plane, they will be equally inclined to the common section of these planes.
24. PA, PB, PC are three concurrent straight lines, each of which is at right angles to the other two: $P X, P Y, P Z$ are perpendiculars drawn from P to $B C, C A, A B$ respectively. Shew that $X Y Z$ is the pedal triangle of the triangle $A B C$.
25. PA, PB, PC are three concurrent straight lines, each of which is at right angles to the other two, and from P a perpendicular $P O$ is drawn to the plane of $A B C$: shew that O is the orthocentre of the triangle $A B C$.

THEOREMS AND EXAMPLES ON BOOK XI.

Definitions.

(i) Lines which are drawn on a plane, or through which a plane may be made to pass, are said to be co-planar.
(ii) The projection of a line on a plane is the locus of the feet of perpendiculars drawn from all points in the given line to the plane.

Theorem 1. The projection of a straight line on a plane is itself a straight line.

Let $A B$ be the given st. line, and $X Y$ the given plane.
From P , any point in AB , draw Pp perp. to the plane XY .
It is required to shew that the locus of p is a st. line.
From A and B draw $A a, B b$ perp. to the plane $X Y$.
Now since $A a, P_{p}, B b$ are all perp. to the plane $X Y$,

$$
\begin{aligned}
& \therefore \text { they are par } \\
& \text { And since these par }{ }^{1 s} \text { all intersect } A B \text {, }
\end{aligned}
$$

xi. 6.

$$
\therefore \text { they are co-planar. }
$$

\therefore the point p is in the common section of the planes $\mathrm{A} b, \mathrm{XY}$; that is, p is in the st. line $a b$.
But p is any point in the projection of AB ,
\therefore the projection of $A B$ is the st. line ab. Q.E.D.

Theorem 2. Draw a perpendicular to each of two straight lines which are not in the same plane. Prove that this perpendicular is the shortest distance between the two lines.

Let $A B$ and $C D$ be the two straight lines, not in the same plane.
(i) It is required to draw a st. line perp. to each of them.

Through E, any point in $A B$, draw $E F$ par ${ }^{1}$ to $C D$.
Let $X Y$ be the plane which passes through $A B, E F$.
From H, any point in $C D$, draw HK perp. to the plane $X Y$. xi. 11.
And through K, draw $K Q$ par! to $E F$, cutting $A B$ at Q.

> Then KQ is also par to CD ;
xI. 9.
and $C D, H K, K Q$ are in one plane.
xi. 7.

From Q, draw QP par ${ }^{1}$ to HK to meet CD at P.
Then shall PQ be perp. to both $A B$ and CD.
For, since $H K$ is perp. to the plane $X Y$, and $P Q$ is par to $H K$, Constr.
$\therefore P Q$ is perp. to the plane $X Y$; xi. 8 .
$\therefore \mathrm{PQ}$ is perp. to AB , which meets it in that plane. xi. Def. 1.
For a similar reason $P Q$ is perp. to QK , $P Q$ is also perp. to CD, which is par to QK.
(ii) It is required to shew that PQ is the least of all st. lines drawn from AB to CD .

Take HE, any other st. line drawn from $A B$ to $C D$.
Then $H E$, being oblique to the plane $X Y$, is greater than the perp. HK.
$\therefore H E$ is also greater than $P Q$. Ex. 1, p. 429. Q.E.D.

Definition. A parallelepiped is a solid figure bounded by three pairs of parallel plane faces.

Theorem 3. (i) The faces of a parallelepiped are parallelograms, of which those which are opposite are identically equal.
(ii) The four diagonals of a parallelepiped are concurrent and bisect one another.

Let $A B A^{\prime} B^{\prime}$ be a par ${ }^{\text {ped }}$, of which $A B C D, C^{\prime} D^{\prime} A^{\prime} B^{\prime}$ are opposite faces.
(i). Then all the faces shall be parms, and the opposite faces shall be identically equal.

For since the planes $\mathrm{DA}^{\prime}, \mathrm{AD}^{\prime}$ are par ${ }^{1}$, xi. Def. 15. and the plane $D B$ meets them,
\therefore the common sections $A B$ and $D C$ are par ${ }^{1}$. xi. 16. Similarly $A D$ and $B C$ are par'.
\therefore the fig. $A B C D$ is a $p^{m}{ }^{m}$,
and $A B=D C$; also $A D=B C$.
I. 34 .

Similarly each of the faces of the par ped is a par ${ }^{m}$;
so that the edges $A B, C^{\prime} D^{\prime}, B^{\prime} A^{\prime}, D C$ are equal and par ${ }^{1}$:
so also are the edges $A D, C^{\prime} B^{\prime}, D^{\prime} A^{\prime}, B C$; and likewise $A C^{\prime}, B^{\prime}$, $C A^{\prime}, D B^{\prime}$.

Then in the opp. faces $A B C D, C^{\prime} D^{\prime} A^{\prime} B^{\prime}$,

$$
\text { we have } A B=C^{\prime} D^{\prime} \text { and } B C=D^{\prime} A^{\prime} ; \quad \text { Proved. }
$$

and since $A B, B C$ are respectively par to $C^{\prime} D^{\prime}, D^{\prime} A^{\prime}$,
\therefore the $\angle A B C=$ the $\angle C^{\prime} D^{\prime} A^{\prime}$;
xi. 10 .
\therefore the par ${ }^{m} A B C \ddot{D}=$ the par ${ }^{m} C^{\prime} D^{\prime} A^{\prime} B^{\prime}$ identically. Ex. 11, p. 70.
(ii) The diagonals $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$ shall be concurrent and bisect one another.

$$
\text { Join } A C \text { and } A^{\prime} C^{\prime} .
$$

Then since $A C^{\prime}$ is equal and par to $A^{\prime} C$,
\therefore the fig. $A C A^{\prime} C^{\prime}$ is a parm ;
\therefore its diagomals $A A^{\prime}$, CC' $^{\prime}$ bisect one another. Fix. 5, p. 70.
That is, $A A^{\prime}$ passes through O, the middle point of $C C^{\prime}$.
Similarly if $B C^{\prime}$ and $B^{\prime} C$ were joined, the fig. $B C B^{\prime} C^{\prime}$ would be a $\mathbf{p a r}^{\mathrm{m}}$;
\therefore the diagonals $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ bisect one another.
That is, BB^{\prime} also passes through O the middle point of CC^{\prime}.
Similarly it may be shewn that $D D^{\prime}$ passes through, and is bisected at, \mathbf{O}.
Q.E.D.

Theorem 4. The straight lines which join the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.

Let ABCD be a tetrahedron, and let $g_{1}, g_{2}, g_{3}, g_{4}$ be the centroids of the faces opposite respectively to A, B, C, D.

Then shall $\mathrm{Ag}_{1}, \mathrm{Bg}_{2}, \mathrm{Cg}_{3}, \mathrm{Dg}_{4}$ be concurrent.
Take X the middle point of the edge CD;
then g_{1} and g_{2} must lie respectively in $B X$ and $A X$,

$$
\begin{aligned}
& \text { so that } \mathrm{BX}=3 . \mathrm{X} g_{1}, \\
& \quad \text { and } \mathrm{AX}=3 . \mathrm{X} g_{2} ; \\
& \therefore \quad g_{1} g_{2} \text { is par }{ }^{1} \text { to } \mathrm{AB} .
\end{aligned}
$$

And $\mathrm{A} g_{1}, \mathrm{~B} g_{2}$ must intersect one another, since they are both in the plane of the $\triangle A X B$:
let them intersect at the point G.
Then by similar $\triangle^{\mathrm{s}}, \mathrm{AG}: \mathrm{G} g_{1}=\mathrm{AB}: g_{1} g_{2}$

$$
\begin{aligned}
& =A X: X g_{2} \\
& =3: 1 .
\end{aligned}
$$

$\therefore \mathrm{B} g_{2}$ cuts $\mathrm{A} g_{1}$ at a point G whose distance from $g_{1}=\frac{1}{4} \cdot \mathrm{~A} g_{1}$.
Similarly it may be shewn that $\mathrm{C} g_{3}$ and $\mathrm{D} g_{4}$ cut $\mathrm{A} g_{1}$ at the same point;

$$
\therefore \text { these lines are concurrent. }
$$

Theorfm 5. (i) If a pyramid is cut by planes drawn parallel to its base, the sections are similar to the base.
(ii) The areas of such sections are in the duplicate ratio of their perpendicular distances from the vertex.

Let SABCD be a pyramid, and $a b c d$ the section formed by a plane drawn par ${ }^{1}$ to the base $A B C D$.
(i) Then the figs. ABCD , abcd shall be similar.

Because the planes abcd, ABCD are par ${ }^{1}$, and the plane $A B b a$ meets them,
\therefore the common sections $a b, A B$ are par ${ }^{1}$.
Similarly $b c$ is par ${ }^{1}$ to $B C$; $c d$ to CD ; and $d a$ to DA.
And since $a b, b c$ are respectively par ${ }^{1}$ to $A B, B C$,

$$
\therefore \text { the } \angle a b c=\text { the } \angle A B C \text {. }
$$

xi. 10.

Similarly the remaining angles of the fig. $a b c d$ are equal to the corresponding angles of the fig. $A B C D$.

$$
\begin{aligned}
& \text { And since the } \triangle^{\mathrm{s}} \mathrm{~S} a b, \mathrm{SAB} \text { are similar, } \\
& \begin{aligned}
\therefore a b: \mathrm{AB} & =\mathrm{Sb}: \mathrm{SB} \\
& =b c: \mathrm{BC}, \text { for the } \triangle^{\mathrm{s}} \mathrm{~S} b c, \mathrm{SBC} \text { are similar. }
\end{aligned}
\end{aligned}
$$

Or, $a b: b c=A B: B C$.
In like manner, $\quad b c: c d=B C: C D$; and so on.
\therefore the figs. abcd, ABCD are equiangular to one another, and have their sides about the equal angles proportional;
\therefore they are similar.
(ii) From S draw $\mathrm{S}_{x} \mathrm{X}$ perp. to the par ${ }^{1}$ planes $a b c d, A B C D$ and meeting them at x and X .

Then shall fig. abcd: fig. $\mathrm{ABCD}=\mathrm{Sx}^{2}: \mathrm{SX}^{2}$.
Join $a x, A X$.
Then it is clear that the $\triangle^{B} S a x, S A X$ are similar.
And the fig. $a b c d$: fig. $\mathrm{ABCD}=a b^{2}: A B^{2}$
vi. 20 .

$$
\begin{aligned}
& =a \mathrm{~S}^{2}: \mathrm{AS}^{2}, \\
& =\mathrm{S} x^{2}: \mathrm{SX}^{2} . \quad \text { Q.E.D. }
\end{aligned}
$$

Definition. A polyhedron is regular when its faces are similar and equal regular polygons.

Theorem 6. There camot be more than five regilar polyhedra.

This is proved by examining the number of ways in which it is pessible to form a solid angle out of the plane angles of various regular polygons; bearing in mind that three plane angles at least are required to form a solid angle, and the sum the plane angles forming a solid angle is less than four right angles. xı. 21.

Suppose the faces of the regular polyhedron to be equilateral triangles.

Then since each angle of an equilateral triangle is $\frac{2}{3}$ of a right angle, it follows that a solid angle may be formed (i) by three, (ii) by four, or (iii) by five such faces; for the sums of the plane angles would be respectively (i) two right angles, (ii) $\frac{8}{3}$ of a right angle, (iii) $\frac{10}{3}$ of a right angle;
that is, in all three cases the sum of the plane angles would be less than four right angles.

But it is impossible to form a solid angle of six or more equilateral triangles, for then the sum of the plane angles would be equal to, or greater than four right angles.

Again, suppose that the faces of the polyhedron are squares.
(iv) Then it is clear that a solid angle could be formed of three, but not more than three, of such faces.

Lastly, suppose the faces are regular pentagons.
(v) Then, since each angle of a regular pentagon is $\frac{6}{5}$ of a right angle, it follows that a solid angle may be formed of three such faces; but the sum of more than three angles of a regular pentagon is greater than four right angles.

Further, since each angle of a regular hexagon is equal to $\frac{4}{3}$ of a right angle, it follows that no solid angle could be formed of such faces; for the sum of three angles of a hexagon is equal to four right angles.

Similarly, no solid angle can be formed of the angles of a polygon of more sides than six.

Thus there can be no more than five regular polyhedra.

Note on the Regular Polyhedra.

(i) The polyhedron of which each solid angle is formed by three equilateral triangless is called a regular tetrahedron.

It has four faces, four vertices, six edges.

(ii) The polyhedron of which each solid angle is formed by four equilateral triangles is called a regular octahedron.

It has eight faces, six vertices, twelve edges.
(iii) The polyhedron of which each solid angle is formed by five equilateral triangles is called a regular icosahedron.

It has twenty faces, twelve vertices, thirty edges.
(iv) The regular polyhedron of which each solid angle is formed by three squares is called a cube.

It has six faces, eight vertices, twelve eidges.

(v) The polyhedron of which each solid angle is formed by three regular pentayons is called a regular dodecahedron.

It has twelve faces, twenty vertices, thirty edges.

Theorem 7. If F denote the number of jaces, E of edyes, and V of vertices in any polyhedron, then will

$$
E+2=F+V
$$

Suppose the polyhedron to be formed by fitting together the faces in succession: suppose also that E_{r} denotes the number of erlges, and V_{r} of vertices, when r faces have been placed in position, and that the polyhedron has n faces when complete.

Now when one face is taken there are as many vertices as edges, that is,

$$
E_{1}=V_{1} .
$$

The second face on being adjusted has two vertices and one edge in common with the first; therefore by adding the second face we increase the number of edges by one more than the number of vertices ;

$$
\therefore \mathrm{E}_{2}-\mathrm{V}_{2}=1 \text {. }
$$

Again, the third face on adjustment has tliree vertices and two edges in common with the former two faces; therefore on adding the third face we once inore increase the number of edges by one more than the number of vertices;

$$
\therefore E_{3}-V_{3}=2 .
$$

Similarly, when all the faces but one have been placed in position,

$$
E_{n-1}-V_{n-1}=n-2
$$

But in fitting on the last face we add no new edges nor vertices;

$$
\begin{gathered}
\therefore E=E_{n-1}, \quad V=V_{n-1}, \quad \text { and } F=n . \\
\text { So that } E-V=F-2, \\
\text { or, } E+2=F+V .
\end{gathered}
$$

This is known as Euler's Theorem.

Miscellaneous Examples on Solid Geometry.

1. The projections of parallel straight lines on any plane are parallel.
2. If $a b$ and $c d$ are the projections of two parallel straight lines $A B, C D$ on any plane, shew that $A B: C D=a b: c d$.
3. Draw two parallel planes one through each of two straight lines which do not intersect and are not parallel.
4. If two straight lines do not intersect and are not parallel, on what planes will their projections be parallel?
5. Find the locus of the middle point of a straight line of constant length whose extremities lie one on each of two non-intersecting straight lines.
6. Three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are taken one on each of the conterminous edges of a cube : prove that the angles of the triangle $A B C$ are all acute.
7. If a parallelepiped is cut by a plane which inte.sects two pairs of opposite faces, the common sections form a parallelogram.
8. The square on the diagonal of a rectangular parallelepiped is equal to the sum of the squares on the three edges conterminous with the diagonal.
9. The square on the diagonal of a culse is three times the square on one of its edges.
10. The sum of the squares on the four diagonals of a parallelepiped is equal to the sum of the squares on the twelve edges.
11. If a perpendicular is drawn from a vertex of a regular tetrahedron on its base, shew that the foot of the perpendicular will divide each median of the base in the ratio $2: 1$.
12. Prove that the perpendicular from the vertex of a regular tetrahedron upon the opposite face is three times that dropped from its foot upon any of the other faces.
13. If $A P$ is the perpendicular drawn from the vertex of a regular tetrahedron upon the opposite face, shew that

$$
3 \mathrm{AP}^{2}=2 \alpha^{2},
$$

where α is the length of an edge of the tetrahedron.
14. The straight lines which join the middle points of opposite edges of a tetrahedron are concurrent.
15. If a tetrahedron is cut by any plane parallel to two opposite edges, the section will be a parallelogram.
16. Prove that the shortest distance between two opposite edges of a regular tetrahedron is one half of the diagonal of the square on an edge.
17. In a tetrahedron if two pairs of opposite edges are at right angles, then the third pair will also be at right angles.
18. In a tetrahedron whose opposite edges are at right angles in pairs, the four perpendiculars drawn from the vertices to the opposite faces and the three shortest distances between opposite edges are concurrent.
19. In a tetrahedron whose opposite edges are at right angles, the sum of the squares on each pair of opposite edges is the same.
20. The sum of the squares on the edges of any tetrahedron is four times the sum of the squares on the straight lines which join the middle points of opposite edges.
21. In any tetrahedron the plane which hisects a dihedral angle divides the opposite edge into segments which are proportional to the areas of the faces meeting at that edge.
22. If the angles at one vertex of a tetrahedron are all right angles, and the opposite face is equilateral, shew that the sum of the perpendiculars dropped from any point in this face upon the other three faces is constant.
23. Shew that the polygons formed by cutting a prism by parallel planes are equal.
24. Three straight lines in space $O A, O B, O C$, are mutually at right angles, and their lengths are $a, b, c:$ express the area of the triangle ABC in its simplest form.
25. Find the diagonal of a regular octahedron in terms of one of its edges.
26. Shew how to cut a cube by a plane so that the lines of section may form a regular hexagon.
27. Shew that every section of a sphere by a plane is a circle.
28. Find in terms of the length of an edge the radius of a sphere inscribed in a regular tetrahedron.
29. Find the locus of points in a given plane at which a straight line of fixed length and position subtends a right angle.
30. A fixed point O is joined to any point P in a given plane which does not contain O; on $O P$ a point Q is taken such that the rectangle $O P, O Q$ is constant : shew that Q lies on a fixed sphere.

WORKS BY H. S. HALL, M.A., and F. H. STEVENS, M.A.
A SCHOOL GEOMETRS, based on tho recommendations of the Mathematical Association, and on the recent report of the Cambridge Syndicate on Cieometry. Crown 8 vo.
Parts I. and II.-P'art I. Lines and Angles. Rectilineal Figures. Part IT. Areas of Rectilineal Figures. Containing the substance of Euclid look I. 18. 6d. Key, 3s. 6d. Part I.-Separately. 18. Part II.Separately. $6 d$.
Fart 1II.-Circles. Containing the substance of Euclid Book III. 1-34, and part of Book IV., 18.
Parts I., II., III. in one volume. 2s. 6d.
Part IV.-Squares and Rectangles. Geometrical equivalents of Certain Algebraical Formulx. Containing the substance of Euclid Book II,. and Book III., 35-37. Gd.
Parta III. and IV. in one volume. 1s. 6 d .
Parts I.-IV. in one volume. 38. Key, 68.
Part V.-Containing the substance of Euclid Book VI. 18. 6d.
Parts IV. and V. in one volume. 28.
Parts I.-V. in one volume. 48.
Parts III., IV. and V. in one volume. 2s. 6d.
Part VI.-Containing the substance of Euclid Book XI., 1-21, together with Theorems relating to the Surfaces and Volumes of the simpler Solid Figures. 1s. 6d.
Parts IV., V., VI. in one volume. 2s. $6 d$.
Key to Parts V. and VI. 3s. $6 d$.
Parts I.-VI. in one volume. 48. 6d. KEY, 8s. 6d.
LESSONS IN EXPERIMENTAL AND PRACTICAL GEOMETRY. Crown 8vo. 1s. $6 d$.
A SCHOOL GEOMETRY, PARTS I. AND II., WITH LESSONS in experimental and practical geometry. Crown 8vo. 2 8. 6 d .

A TEXT-BOOK OF EUCLID'S ELEMENTS, including Alternative Proofs, together with Additional Theorems and Exercises, classified and arranged. Third Edition enlarged. Books I.-VI. XI. and XII. Props. 1 and 3. Globe 8vo. 4s. 6d. Also in parts, separately, as follows :

A KEY TO THE EXERCISES AND EXAMPLES CONTAINED IN A TEXT-BOOK OF EUCLID'S ELEMENTS. Crown 8vo. Books I.-VI. and XI. 8s. $6 d$. Books I.-IV. 6s. 6 d . Books VI. and XI. 3 s. $6 d$.

AN ELEMENTARY COURSE OF MATHEMATICS. Comprising Arithmetic, Algebra, and Euclid. Globe 8vo. 2s. $6 d$.
AN ELEMENTARY COURSE OF MATHEMATICS. Comprising Arithmetic, Algebra, and Geometry. Globe 8vo. 2s. 6d.
A SCHOOL ARITHMETIC. Crown 8vo.
Part I. With Answers, 2s. 6d. Without Answers, 2s. Key, 48. 6d. Part II. With Answers, $2 s .6 d$. Without Answers, $2 s$. Key, $6 s$. Complete. With Answers, 4s. 6d. Without Answers, $3 s .6 d$. Key, $10 s .6 d$. Answers, complete, 1 s .
EXAMPLES IN ARITHMETIC. Taken from "A School Arithmetic." With or without Answers. Crown 8vo. Part I. 18. 6 d. Part II. 2s. Complete, 3δ.

WORKS BY H. S. HALL, M.A., and S. R. KNIGHT, B.A. ELEMENTARY ALGEBRA FOR SCHOOLS (containing a full treatment of Graphs). New Edition, revised and enlarged. Globe 8vo. (bound in maroon-coloured eloth), 3s. 6d. With Auswers (bound in green-coloured cloth), 4s. 6 d .
 NATURE. - "This is, in our opinion, the best Elementary Algebra for school use. It is the combined work of two teachers who have had considerable experience of actual school teaching . . . and so successfully grapplos with difficulties which our present text-books in use, from their authors lacking such experience, ignore or slightly touch upon. ... We confidently recornmend it to mathematical teachern, who, we feel sure, will find it the best book of its kind for teaching purposes."

ANSWERS TO EXAMPLES in ELEMENTARY ALGEBRA. Fcap. 8vo. Sewed 1 s.
 SOLUTIONS OF THE EXAMPLES IN ELEMENTARY ALGEBRA FOR SCHOOLS. Crown 8vo. 8s. $6 d$.

ELEMENTARY ALGEBRA FOR SCHOOLS. (Chapters XXVIII.-XLIV.) With Answers. Globe 8vo. 2s. 6ul.

HIGHER ALGEBRA. A Sequel to Elementary Algebra for Schools. 4th Edition, revised and enlarged. Cr. 8vo. 7s. 6d. ATHENAEUM.-"The Elementary Algebra, by the same authors, is a work of such exceptioual merit that those acquainted with it will form high expectations of the sequel to it now issued. Nor will they be disappointed. Of the authors' Higher Algebra as of their Elementary Algebra, we unhesitatingly assert that it is by far the best work of its kind with which we are acquainted. It supplies a want much felt by teachers."

SOLUTIONS OF THE EXAMPLES IN HIGHER AL GEBRA. Crown 8vo. 10s. $6 d$.

ALGEBRA FOR BEGINNERS. Globe 8vo, 2s. With Answers, $2 s .6 d$.
SCHOOLMASTER.-"To teachers who have had experience of either the Elementary or the Higher Algebra it will only be necessary to say that this book is marked by the same qualities which have brought these works into suck deserved repute. To those who are still in ignorance of these books, we can say that for clear, simple, and concise explanation, convenient order of subjectmatter and copious and well-graduated exercises, these books have, to say the least, no superiors."

ABERDEEN FREE ARESS.-"To give the learner a sufficient knowledge of the ordinary algebraical processes without presenting him with too many of their difficulties requires a thorough knowledge of what is necessary for a beginner, and of what may be omitted until a more advanced stage. A very slight examination of the book shows that the authors possess this qualification in an eminent degree. . . The definitions and explanations of symbols are full and simple. . . . An important feature of the work is the great number of problems given to show the practical applications of the science."
ANSWERS TO ALGEBRA FOR BEGINNERS and EASY GRAPHS. Globe 8vo. Sewed, $6 d$.

MACMILLAN AND CO., Ltd., LONDON

WORKS BY H. S. HALL, M.A., and S. R. KNIGHT, B.A. ALGEBRAICAL EXERCISES AND EXAMINATION PAPERS. With or without Answers. Third Edition, revised and enlarged. Globe 8vo. 2s. 6d.
I.YISH TBACHERS JOURNAL.-"We know of no better work to place is the hands of junior teachors, monitors, and senior pupils. Any person who works cavefully and steadily through this book could not possibly fail in an oxamination of tiementary Algebra. . . We congratulate the authors on the skill displayed in the selections of examples."

SCHOOLMASTBR. - "We can strongly recommend the volume to teachers seeking a well-arranged serios of tests in Algebra."
ARITHMETICAL EXERCISES AND EXAMINATION PAPERS. With an Appendix containing Questions in LOGARITHMS AND MENSURATION. With or without Answers. 3rd Edition, revised and enlarged. Gl.8vo. 2s. 6d.
CAMBRIDGB RBVIBW.-"All the mathematical work these gentlemen have given to the public is of genuine worth, and these exercises are no exception to the rule. The addition of the logarithm and mensuration questions add greatly to the value."
ELEMENTARY TRIGONOMETRY. Fourth Edition, revised and enlarged. Globe 8vo. 4s. 6d.
ACADEMY.-"It is drawn up with that skill which shows the writers to be past masters in the art of teaching, and is quite on as high a platform for Trigonometry as their previous bonks on Algebra are for that subject. We have read the text with care and have thoroughly enjoyed it."

BDUCATIONAL REVIEW.-"On the whole it is the best elementary treatise on Trigonometry we have seen."
SOLUTIONS OF THE EXAMPLES IN ELEMENTARY TRIGONOMETRY. Crown 8vo. 8s. 6d.

WORKS BY H. S. HALL, M.A.

A SCHOOL ALGEBRA. With or without Answers. Crown 8 vo . Part I., 2s. 6d. Part II., 1s. 6d. Parts I. and II., 3s. 6 d. Part III., 1s. 6d. Parts II. and III., 2s. 6d. Complete, 4s. 6d. Key to Part I., 6s. Key to Parts II. and III., 6s. Key to Complete, 10 s.

EXAMPLES IN ALGEBRA. Taken from Part I. of "A SCHOOL ALGEBRA." With or without Answers. Crown 8vo. $2 s$.
algebraical examples Supplementary to Hall and Knight's ALGEBRA FOR BEGINNERS and ELEMENTARY ALGEBRA (Chaps. I.-XXVII.). With or without Answers. Globe 8vo. 2s.
A SHORT INTRODUCTION TO GRAPHICAL ALGEBRA. Fourth Edition, revised and enlarged. Globe 8vo. 1 s.
SOLUTIONS OF THE EXAMPLES IN HALL'S GRAPHICAL ALGEBRA. Crown 8vo. 3s. $6 d$.
EASY GRAPHS. Cr. 8vo. 1s. SOLUTIONS. Cr. 8vo. 3s. $6 d$.

WORK BY H. S. HALL, M.A., and R. J. W00D, B.A.
ALGEBRA FOR ELEMENTARY SCHOOLS. Globe 8 vo . Parts I., II., and III., 6d. each. Cloth, 8d. each. Answers, 4d. each.

Abstract

HEAD TEACHER - "Any boy working conscientiously through this book will have laid a solid foundation for more advanced effort."

IEACHERS" AID.- "The aim of the authors is to provide an easy and wellgraduated course of Algebra suited to the requirements and capacity of those who take it as a specific subject in elementary schwols. The general plan and arrangement of Hall \& Knight's well-known elementary text-book have been closely followed with such changes as the special needs of elementary pupils demand. It is needless to say that the book in every way is a creditable production."

MADRAS EDUCATIONAL NEWS.-"The examples are many and well chosen. . . . It is well calculated to serve the purpose for which it is intended."

WORKS BY F. H. STEVENS, M.A.

MENSURATION FOR BEGINNERS, with the Rudiments of Geometrical Drawing. With or without Answers. Globe 8vo. 1s. $6 d$.

THE EDUCATIONAL TIMES (March, 1897). "A considerable amount of ground is covered, and the whole is written with rare judgment and clearness. We should judge that it would be practically impossible to produce a book better adapted to its purpose."

THE GUARDIAN (January 13th, 1897). -"The little book is really excellent. Mr. Stevens seems to us to have chosen just the elements that are of use in every day life, and, in the notes and examples he has worked out, to have given sufficient illustration of right methods. Exercises are numerous and discreetly tabulated; and-a point worth noticing-a good many are set for graphic solution."

UNIVERSITY CORRESPONDENT.-"The main book seems to us to be admirably written and got up in attractive form, with just such differences of type as are a real help."

EDUCATIONAL NEWS.-"This little treatise will be found thoroughly practical . . . the explanations are clear and to the point, and the examples numerous and graded. It is worth the attention of teachers and pupil-teachers, who have this subject to take. The book is in all respects worthy of commendation."

ELEMENTARY MENSURATION. Globe 8vo. $3 s .6 \mathrm{~d}$.

THE OXFORD MAGAZINE (May 27th, 1896).-"Mr. Stevens seems bent on making students understand the meaning of the processes employed; and his examples are excellent. This is by far the best book extant od the subject."

SCHOOL GUARDIAN. - "The volume is systematically arranged, clearly and concisely written, and fully illustrated by numerous diagrams and a variety of examples and exercises. "It is in every way a creditable piece of work, and worthy of commendation."

MACMILLAN AND CO., Ltd., LONDON.

CORkIULUM LABORATORY

University of British Columbia Library DUE DATE

	-

[^0]: म.S.E.

[^1]: * This step of the construction is effected by first describing on $A B$ produced a triangle whose sides are respectively equal to those of the triangle C (1. 22); and by then making a parallelogram equal to the triangle so drawn, and having an angle equal to D (I. 42).

[^2]: н s.e.

[^3]: * Euclid here assumes that if two similar and similarly situated figures are equal, their homologous sides are equal. The proof is easy and may be left as an exercise for the student.

